IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i3p805-826.html
   My bibliography  Save this article

Estimation, prediction and interpretation of NGG random effects models: an application to Kevlar fibre failure times

Author

Listed:
  • Raffaele Argiento
  • Alessandra Guglielmi
  • Antonio Pievatolo

Abstract

We propose a class of Bayesian semiparametric mixed-effects models; its distinctive feature is the randomness of the grouping of observations, which can be inferred from the data. The model can be viewed under a more natural perspective, as a Bayesian semiparametric regression model on the log-scale; hence, in the original scale, the error is a mixture of Weibull densities mixed on both parameters by a normalized generalized gamma random measure, encompassing the Dirichlet process. As an estimate of the posterior distribution of the clustering of the random-effects parameters, we consider the partition minimizing the posterior expectation of a suitable class of loss functions. As a merely illustrative application of our model we consider a Kevlar fibre lifetime dataset (with censoring). We implement an MCMC scheme, obtaining posterior credibility intervals for the predictive distributions and for the quantiles of the failure times under different stress levels. Compared to a previous parametric Bayesian analysis, we obtain narrower credibility intervals and a better fit to the data. We found that there are three main clusters among the random-effects parameters, in accordance with previous frequentist analysis. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Raffaele Argiento & Alessandra Guglielmi & Antonio Pievatolo, 2014. "Estimation, prediction and interpretation of NGG random effects models: an application to Kevlar fibre failure times," Statistical Papers, Springer, vol. 55(3), pages 805-826, August.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:805-826
    DOI: 10.1007/s00362-013-0528-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0528-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0528-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lijoi, Antonio & Mena, Ramses H. & Prunster, Igor, 2005. "Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1278-1291, December.
    2. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Controlling the reinforcement in Bayesian non‐parametric mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 715-740, September.
    3. Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
    4. Cynthia Tojeiro & Francisco Louzada, 2012. "A general threshold stress hybrid hazard model for lifetime data," Statistical Papers, Springer, vol. 53(4), pages 833-848, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corradin, Riccardo & Nieto-Barajas, Luis Enrique & Nipoti, Bernardo, 2022. "Optimal stratification of survival data via Bayesian nonparametric mixtures," Econometrics and Statistics, Elsevier, vol. 22(C), pages 17-38.
    2. Haydar Demirhan & Kamil Demirhan, 2016. "A Bayesian approach for the estimation of probability distributions under finite sample space," Statistical Papers, Springer, vol. 57(3), pages 589-603, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    2. Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.
    3. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    4. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    5. Antonio Canale & Igor Prünster, 2017. "Robustifying Bayesian nonparametric mixtures for count data," Biometrics, The International Biometric Society, vol. 73(1), pages 174-184, March.
    6. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    7. Matteo Ruggiero & Matteo Sordello, 2018. "Clustering dynamics in a class of normalised generalised gamma dependent priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 83-98, February.
    8. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    9. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2019. "Modal posterior clustering motivated by Hopfield’s network," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 92-100.
    10. Subharup Guha & Rex Jung & David Dunson, 2022. "Predicting phenotypes from brain connection structure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 639-668, June.
    11. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.
    12. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    13. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97, March.
    14. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    15. Navarrete, Carlos A. & Quintana, Fernando A., 2011. "Similarity analysis in Bayesian random partition models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 97-109, January.
    16. Corradin, Riccardo & Nieto-Barajas, Luis Enrique & Nipoti, Bernardo, 2022. "Optimal stratification of survival data via Bayesian nonparametric mixtures," Econometrics and Statistics, Elsevier, vol. 22(C), pages 17-38.
    17. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    18. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    19. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    20. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:805-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.