Advanced Search
MyIDEAS: Login to save this article or follow this journal

Fair allocation of indivisible goods: the two-agent case

Contents:

Author Info

  • Eve Ramaekers

    ()

Abstract

One must allocate a finite set of indivisible goods among two agents without monetary compensation. We impose Pareto-efficiency, anonymity, a weak notion of no-envy, a welfare lower bound based on each agent’s ranking of the subsets of goods, and a monotonicity property w.r.t. changes in preferences. We prove that there is a rule satisfying these axioms. If there are three goods, it is the only rule, together with one of its subcorrespondences, satisfying each fairness axiom and not discriminating between goods. Copyright Springer-Verlag 2013

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00355-012-0684-0
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Social Choice and Welfare.

Volume (Year): 41 (2013)
Issue (Month): 2 (July)
Pages: 359-380

as in new window
Handle: RePEc:spr:sochwe:v:41:y:2013:i:2:p:359-380

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00355/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Moulin, H., 1989. "Uniform Externalities: Two Axioms For Fair Allocation," UFAE and IAE Working Papers 117-89, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  2. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2009. "The undercut procedure: an algorithm for the envy-free division of indivisible items," MPRA Paper 12774, University Library of Munich, Germany.
  3. d'Aspremont, Claude & Gevers, Louis, 1977. "Equity and the Informational Basis of Collective Choice," Review of Economic Studies, Wiley Blackwell, vol. 44(2), pages 199-209, June.
  4. Moulin, Herve, 1992. "An Application of the Shapley Value to Fair Division with Money," Econometrica, Econometric Society, vol. 60(6), pages 1331-49, November.
  5. Steven J. Brams & Paul H. Edelman & Peter C. Fishburn, 2003. "Fair Division Of Indivisible Items," Theory and Decision, Springer, vol. 55(2), pages 147-180, 09.
  6. Edelman, Paul & Fishburn, Peter, 2001. "Fair division of indivisible items among people with similar preferences," Mathematical Social Sciences, Elsevier, vol. 41(3), pages 327-347, May.
  7. Dorothea Herreiner & Clemens Puppe, 2002. "A simple procedure for finding equitable allocations of indivisible goods," Social Choice and Welfare, Springer, vol. 19(2), pages 415-430, April.
  8. Moulin, Herve, 1991. "Welfare bounds in the fair division problem," Journal of Economic Theory, Elsevier, vol. 54(2), pages 321-337, August.
  9. Steven J. Brams & Peter C. Fishburn, 2000. "Fair division of indivisible items between two people with identical preferences: Envy-freeness, Pareto-optimality, and equity," Social Choice and Welfare, Springer, vol. 17(2), pages 247-267.
  10. Demko, Stephen & Hill, Theodore P., 1988. "Equitable distribution of indivisible objects," Mathematical Social Sciences, Elsevier, vol. 16(2), pages 145-158, October.
  11. Hanna Halaburda & Guillaume Haeringer, 2013. "Monotone Strategyproofness," Working Papers 712, Barcelona Graduate School of Economics.
  12. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-30, March.
  13. Lars Ehlers & Bettina Klaus, 2003. "Coalitional strategy-proof and resource-monotonic solutions for multiple assignment problems," Social Choice and Welfare, Springer, vol. 21(2), pages 265-280, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2014. "An algorithm for the proportional division of indivisible items," MPRA Paper 56587, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:41:y:2013:i:2:p:359-380. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.