IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v60y1995i2p247-258.html
   My bibliography  Save this article

On the robustness of maximum likelihood scaling for violations of the error model

Author

Listed:
  • Gert Storms

Abstract

No abstract is available for this item.

Suggested Citation

  • Gert Storms, 1995. "On the robustness of maximum likelihood scaling for violations of the error model," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 247-258, June.
  • Handle: RePEc:spr:psycho:v:60:y:1995:i:2:p:247-258
    DOI: 10.1007/BF02301415
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02301415
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02301415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshio Takane & Justine Sergent, 1983. "Multidimensional scaling models for reaction times and same-different judgments," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 393-423, September.
    2. Geert Soete & J. Carroll, 1983. "A maximum likelihood method for fitting the wandering vector model," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 553-566, December.
    3. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    4. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    5. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    6. Suzanne Winsberg & James Ramsay, 1981. "Analysis of pairwise preference data using integrated B-splines," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 171-186, June.
    7. Yoshio Takane, 1981. "Multidimensional successive categories scaling: A maximum likelihood method," Psychometrika, Springer;The Psychometric Society, vol. 46(1), pages 9-28, March.
    8. J. Ramsay, 1978. "Confidence regions for multidimensional scaling analysis," Psychometrika, Springer;The Psychometric Society, vol. 43(2), pages 145-160, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.
    2. Dawn Iacobucci & Doug Grisaffe & Wayne DeSarbo, 2017. "Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 81-98, December.
    3. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    4. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abe, Makoto, 1998. "Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling," European Journal of Operational Research, Elsevier, vol. 111(2), pages 216-227, December.
    2. J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.
    3. Henry Brady, 1985. "Statistical consistency and hypothesis testing for nonmetric multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 509-537, December.
    4. Gruenhage, Gina & Opper, Manfred & Barthelme, Simon, 2016. "Visualizing the effects of a changing distance on data using continuous embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 51-65.
    5. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    6. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    7. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    8. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    9. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    10. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    11. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    12. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    13. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    14. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
    15. Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
    16. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    17. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    19. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    20. Raffaella Piccarreta, 2012. "Graphical and Smoothing Techniques for Sequence Analysis," Sociological Methods & Research, , vol. 41(2), pages 362-380, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:60:y:1995:i:2:p:247-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.