IDEAS home Printed from https://ideas.repec.org/a/spr/patien/v7y2014i2p129-140.html
   My bibliography  Save this article

Group Decision Making with the Analytic Hierarchy Process in Benefit-Risk Assessment: A Tutorial

Author

Listed:
  • J. Hummel
  • John Bridges
  • Maarten IJzerman

Abstract

The analytic hierarchy process (AHP) has been increasingly applied as a technique for multi-criteria decision analysis in healthcare. The AHP can aid decision makers in selecting the most valuable technology for patients, while taking into account multiple, and even conflicting, decision criteria. This tutorial illustrates the procedural steps of the AHP in supporting group decision making about new healthcare technology, including (1) identifying the decision goal, decision criteria, and alternative healthcare technologies to compare, (2) structuring the decision criteria, (3) judging the value of the alternative technologies on each decision criterion, (4) judging the importance of the decision criteria, (5) calculating group judgments, (6) analyzing the inconsistency in judgments, (7) calculating the overall value of the technologies, and (8) conducting sensitivity analyses. The AHP is illustrated via a hypothetical example, adapted from an empirical AHP analysis on the benefits and risks of tissue regeneration to repair small cartilage lesions in the knee. Copyright Springer International Publishing Switzerland 2014

Suggested Citation

  • J. Hummel & John Bridges & Maarten IJzerman, 2014. "Group Decision Making with the Analytic Hierarchy Process in Benefit-Risk Assessment: A Tutorial," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 7(2), pages 129-140, June.
  • Handle: RePEc:spr:patien:v:7:y:2014:i:2:p:129-140
    DOI: 10.1007/s40271-014-0050-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40271-014-0050-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40271-014-0050-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    2. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, September.
    3. P. Thokala & A. Duenas, 2012. "Multiple Criteria Decision Analysis for Health Technology Assessment," Post-Print hal-00800398, HAL.
    4. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834.
    5. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    6. Kuenz Murphy, Catherine, 1993. "Limits on the analytic hierarchy process from its consistency index," European Journal of Operational Research, Elsevier, vol. 65(1), pages 138-139, February.
    7. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    8. Gerardine DeSanctis & R. Brent Gallupe, 1987. "A Foundation for the Study of Group Decision Support Systems," Management Science, INFORMS, vol. 33(5), pages 589-609, May.
    9. Saaty, Thomas L., 1994. "Highlights and critical points in the theory and application of the Analytic Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 74(3), pages 426-447, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sue Ellen Taelman & Davide Tonini & Alexander Wandl & Jo Dewulf, 2018. "A Holistic Sustainability Framework for Waste Management in European Cities: Concept Development," Sustainability, MDPI, vol. 10(7), pages 1-33, June.
    2. Mausumi Bose & Rahul Mukerjee, 2021. "Shorter prediction intervals for anonymous individual assessments in group decision-making via pairwise comparisons," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 833-857, October.
    3. Dezhi Li & Wentao Wang & Guanying Huang & Shenghua Zhou & Shiyao Zhu & Haibo Feng, 2023. "How to Enhance Citizens’ Sense of Gain in Smart Cities? A SWOT-AHP-TOWS Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(3), pages 787-820, February.
    4. Marcelo Miguel da Cruz & Rodrigo Goyannes Gusmão Caiado & Renan Silva Santos, 2022. "Industrial Packaging Performance Indicator Using a Group Multicriteria Approach: An Automaker Reverse Operations Case," Logistics, MDPI, vol. 6(3), pages 1-18, August.
    5. Tahmineh Akbarinejad & Alenka Temeljotov Salaj & Agnar Johansen, 2023. "Implementing the Integrated Social Sustainability Assessment to Norway: A Citizen-Centric and Expert-Weighted Approach," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    6. Ping Li & Fuyuan Wang & Xin Zheng & Jinku Huang, 2020. "Influencing Factors and Mechanism of Urban Community Tourism Development: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    7. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    8. Wiebke Mohr & Anika Rädke & Adel Afi & Franka Mühlichen & Moritz Platen & Annelie Scharf & Bernhard Michalowsky & Wolfgang Hoffmann, 2022. "Development of a Quantitative Preference Instrument for Person-Centered Dementia Care—Stage 2: Insights from a Formative Qualitative Study to Design and Pretest a Dementia-Friendly Analytic Hierarchy ," IJERPH, MDPI, vol. 19(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    2. Marjan Hummel & Fabian Volz & Jeannette Manen & Marion Danner & Charalabos-Markos Dintsios & Maarten IJzerman & Andreas Gerber, 2012. "Using the Analytic Hierarchy Process to Elicit Patient Preferences," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(4), pages 225-237, December.
    3. Roberto Cervelló-Royo & Marina Segura & Regina García-Pérez & Baldomero Segura-García del Río, 2021. "An Analysis of Preferences in Housing Demand by Means of a Multicriteria Methodology (AHP). A More Sustainable Approach," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    4. Theißen, Sebastian & Spinler, Stefan, 2014. "Strategic analysis of manufacturer-supplier partnerships: An ANP model for collaborative CO2 reduction management," European Journal of Operational Research, Elsevier, vol. 233(2), pages 383-397.
    5. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    6. Roberto Castaneda & Pilar Arroyo & Lourdes Loza, 2020. "Assessing Countries Sustainability: A Group Multicriteria Decision Making Methodology Approach," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 10(1), pages 174-174, July.
    7. Jordi Gallego-Ayala & Dinis Juízo, 2014. "Integrating Stakeholders’ Preferences into Water Resources Management Planning in the Incomati River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 527-540, January.
    8. Ali Aghazadeh Ardebili & Elio Padoano & Antonella Longo & Antonio Ficarella, 2022. "The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization," Risks, MDPI, vol. 10(3), pages 1-22, February.
    9. Ester Guijarro & Cristina Santadreu-Mascarell & Beatriz Blasco-Gallego & Lourdes Canós-Darós & Eugenia Babiloni, 2021. "On the Identification of the Key Factors for a Successful Use of Twitter as a Medium from a Social Marketing Perspective," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    10. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    11. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    12. Clara Champalle & James D. Ford & Mya Sherman, 2015. "Prioritizing Climate Change Adaptations in Canadian Arctic Communities," Sustainability, MDPI, vol. 7(7), pages 1-25, July.
    13. Afsaneh Afzali & Soheil Sabri & M. Rashid & Jamal Mohammad Vali Samani & Ahmad Ludin, 2014. "Inter-Municipal Landfill Site Selection Using Analytic Network Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2179-2194, June.
    14. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    15. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    16. Wiebke Mohr & Anika Rädke & Adel Afi & Franka Mühlichen & Moritz Platen & Annelie Scharf & Bernhard Michalowsky & Wolfgang Hoffmann, 2022. "Development of a Quantitative Preference Instrument for Person-Centered Dementia Care—Stage 2: Insights from a Formative Qualitative Study to Design and Pretest a Dementia-Friendly Analytic Hierarchy ," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    17. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    18. Nikola Kadoić & Nina Begičević Ređep & Blaženka Divjak, 2018. "A new method for strategic decision-making in higher education," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 611-628, September.
    19. Aris Angelis & Panos Kanavos, 2016. "Value-Based Assessment of New Medical Technologies: Towards a Robust Methodological Framework for the Application of Multiple Criteria Decision Analysis in the Context of Health Technology Assessment," PharmacoEconomics, Springer, vol. 34(5), pages 435-446, May.
    20. Chi-Yo Huang & Pei-Han Chung & Joseph Z. Shyu & Yao-Hua Ho & Chao-Hsin Wu & Ming-Che Lee & Ming-Jenn Wu, 2018. "Evaluation and Selection of Materials for Particulate Matter MEMS Sensors by Using Hybrid MCDM Methods," Sustainability, MDPI, vol. 10(10), pages 1-35, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:patien:v:7:y:2014:i:2:p:129-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.