IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i1p837-850.html
   My bibliography  Save this article

A new procedure to best-fit earthquake magnitude probability distributions: including an example for Taiwan

Author

Listed:
  • J. Wang
  • Yih-Min Wu
  • Duruo Huang
  • Su-Chin Chang

Abstract

Since the year 1973, more than 54,000 M w ≥ 3.0 earthquakes have occurred around Taiwan, and their magnitude–frequency relationship was found following with the Gutenberg–Richter recurrence law with b value equal to 0.923 from the least-square calculation. However, using this b value with the McGuire–Arabasz algorithm results in some disagreement between observations and expectations in magnitude probability. This study introduces a simple approach to optimize the b value for better modeling of the magnitude probability, and its effectiveness is demonstrated in this paper. The result shows that the optimal b value can better model the observed magnitude distribution, compared with two customary methods. For example, given magnitude threshold = 5.0 and maximum magnitude = 8.0, the optimal b value of 0.835 is better than 0.923 from the least-square calculation and 0.913 from maximum likelihood estimation for simulating the earthquake’s magnitude probability distribution around Taiwan. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • J. Wang & Yih-Min Wu & Duruo Huang & Su-Chin Chang, 2014. "A new procedure to best-fit earthquake magnitude probability distributions: including an example for Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 837-850, March.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:837-850
    DOI: 10.1007/s11069-013-0934-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0934-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0934-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jui-Pin Wang & Chung-Han Chan & Yih-Min Wu, 2011. "The distribution of annual maximum earthquake magnitude around Taiwan and its application in the estimation of catastrophic earthquake recurrence probability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 553-570, October.
    2. Julio Mezcua & Juan Rueda & Rosa García Blanco, 2011. "A new probabilistic seismic hazard study of Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1087-1108, November.
    3. Z. Rafi & C. Lindholm & H. Bungum & A. Laghari & N. Ahmed, 2012. "Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1317-1354, April.
    4. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ghobadi & Davood Fereidooni, 2012. "Seismic hazard assessment of the city of Hamedan and its vicinity, west of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1025-1038, September.
    2. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    3. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    4. J. Wang, 2016. "Reviews of seismicity around Taiwan: Weibull distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1651-1668, February.
    5. T. Sitharam & K. Vipin, 2011. "Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 639-653, November.
    6. G. Surve & Jyotima Kanaujia & Nitin Sharma, 2021. "Probabilistic seismic hazard assessment studies for Mumbai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 575-600, May.
    7. Zahid Khan & Magdi El-Emam & Muhammad Irfan & Jamal Abdalla, 2013. "Probabilistic seismic hazard analysis and spectral accelerations for United Arab Emirates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 569-589, June.
    8. K. Vipin & T. Sitharam & S. Kolathayar, 2013. "Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1179-1195, January.
    9. Ade Faisal & Taksiah Majid & Fauziah Ahmad & Felix Tongkul & Syafrina Sari, 2011. "Influence of large dam on seismic hazard in low seismic region of Ulu Padas Area, Northern Borneo," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 237-269, October.
    10. Naveed Ahmad & Qaisar Ali & Helen Crowley & Rui Pinho, 2014. "Earthquake loss estimation of residential buildings in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1889-1955, September.
    11. Yun Xu & J. P. Wang, 2017. "Earthquake recurrence assessment of the active Shanchiao Fault in northern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 835-851, September.
    12. J. L. Amaro-Mellado & A. Morales-Esteban & F. Martínez-Álvarez, 2018. "Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 739-758, September.
    13. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    14. Chi-Hsuan Chen & Jui-Pin Wang & Yih-Min Wu & Chung-Han Chan & Chien-Hsin Chang, 2013. "A study of earthquake inter-occurrence times distribution models in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1335-1350, December.
    15. K. Vipin & T. Sitharam & P. Anbazhagan, 2010. "Probabilistic evaluation of seismic soil liquefaction potential based on SPT data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 547-560, June.
    16. Avik Paul & Suvam Gupta & Sima Ghosh & Deepankar Choudhury, 2020. "Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 15-45, May.
    17. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.
    18. Diana L. Jaimes & Christian R. Escudero & Karen L. Flores & Araceli Zamora-Camacho, 2023. "Multicriteria seismic hazard and social vulnerability assessment in the Puerto Vallarta metropolitan area, Mexico: toward a comprehensive seismic risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2671-2692, March.
    19. Jui-Pin Wang & Su-Chin Chang & Yih-Min Wu & Yun Xu, 2012. "PGA distributions and seismic hazard evaluations in three cities in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1373-1390, November.
    20. Jaykumar Shukla & Deepankar Choudhury, 2012. "Seismic hazard and site-specific ground motion for typical ports of Gujarat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 541-565, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:837-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.