IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v157y2013i2d10.1007_s10957-012-0188-1.html
   My bibliography  Save this article

Necessary and Sufficient Conditions for Feedback Nash Equilibria for the Affine-Quadratic Differential Game

Author

Listed:
  • J. C. Engwerda

    (Tilburg University)

  • Salmah

    (Gadjah Mada University)

Abstract

In this note, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon. The performance function is assumed to be indefinite and the underlying system affine. We derive both necessary and sufficient conditions under which this game has a Nash equilibrium. As a special case, we derive existence conditions for the multi-player zero-sum game.

Suggested Citation

  • J. C. Engwerda & Salmah, 2013. "Necessary and Sufficient Conditions for Feedback Nash Equilibria for the Affine-Quadratic Differential Game," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 552-563, May.
  • Handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0188-1
    DOI: 10.1007/s10957-012-0188-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0188-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0188-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob Engwerda, 2007. "Algorithms for computing Nash equilibria in deterministic LQ games," Computational Management Science, Springer, vol. 4(2), pages 113-140, April.
    2. Dieter Grass & Jonathan P. Caulkins & Gustav Feichtinger & Gernot Tragler & Doris A. Behrens, 2008. "Optimal Control of Nonlinear Processes," Springer Books, Springer, number 978-3-540-77647-5, September.
    3. W. A. van den Broek & J. C. Engwerda & J. M. Schumacher, 2003. "Robust Equilibria in Indefinite Linear-Quadratic Differential Games," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 565-595, December.
    4. Weeren, A.J.T.M. & Schumacher, J.M. & Engwerda, J.C., 1994. "Asymptotic analysis of Nash equilibria in nonzero-sum linear-quadratic differential games : The two player case," Research Memorandum FEW 634, Tilburg University, School of Economics and Management.
    5. Engwerda, J.C. & Weeren, A.J.T.M., 2006. "A Result on Output Feedback Linear Quadratic Control," Other publications TiSEM a11b5333-1364-4a3c-a637-4, Tilburg University, School of Economics and Management.
    6. Joseph Plasmans & Jacob Engwerda & Bas van Aarle & Giovanni di Bartolomeo & Tomasz Michalak, 2006. "Dynamic Modeling of Monetary and Fiscal Cooperation Among Nations," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-0-387-27931-2, July-Dece.
    7. A. J. T. M. Weeren & J. M. Schumacher & J. C. Engwerda, 1999. "Asymptotic Analysis of Linear Feedback Nash Equilibria in Nonzero-Sum Linear-Quadratic Differential Games," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 693-722, June.
    8. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engwerda, J.C., 2013. "A Numerical Algorithm to find All Scalar Feedback Nash Equilibria," Discussion Paper 2013-050, Tilburg University, Center for Economic Research.
    2. Jacob Engwerda, 2017. "A Numerical Algorithm to Calculate the Unique Feedback Nash Equilibrium in a Large Scalar LQ Differential Game," Dynamic Games and Applications, Springer, vol. 7(4), pages 635-656, December.
    3. Alberto Bressan & Khai T. Nguyen, 2018. "Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games," Dynamic Games and Applications, Springer, vol. 8(1), pages 42-78, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engwerda, J.C., 2013. "A Numerical Algorithm to find All Scalar Feedback Nash Equilibria," Other publications TiSEM aa391d31-11df-4693-9583-1, Tilburg University, School of Economics and Management.
    2. Engwerda, J.C. & Salmah, Y., 2010. "Necessary and Sufficient Conditions for Feedback Nash Equilibria for the Affine Quadratic Differential," Discussion Paper 2010-78, Tilburg University, Center for Economic Research.
    3. Jacob Engwerda, 2017. "A Numerical Algorithm to Calculate the Unique Feedback Nash Equilibrium in a Large Scalar LQ Differential Game," Dynamic Games and Applications, Springer, vol. 7(4), pages 635-656, December.
    4. Engwerda, J.C. & Salmah, Y., 2010. "Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games," Discussion Paper 2010-79, Tilburg University, Center for Economic Research.
    5. Engwerda, J.C., 2012. "Prospects of Tools from Differential Games in the Study Of Macroeconomics of Climate Change," Other publications TiSEM cac36d07-227b-4cf2-83cb-7, Tilburg University, School of Economics and Management.
    6. Jacob Engwerda, 2022. "Min-Max Robust Control in LQ-Differential Games," Dynamic Games and Applications, Springer, vol. 12(4), pages 1221-1279, December.
    7. Alberto Bressan & Khai T. Nguyen, 2018. "Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games," Dynamic Games and Applications, Springer, vol. 8(1), pages 42-78, March.
    8. Tomasz Michalak & Jacob Engwerda & Joseph Plasmans, 2011. "A Numerical Toolbox to Solve N-Player Affine LQ Open-Loop Differential Games," Computational Economics, Springer;Society for Computational Economics, vol. 37(4), pages 375-410, April.
    9. A. J. Novak & G. Feichtinger & G. Leitmann, 2010. "A Differential Game Related to Terrorism: Nash and Stackelberg Strategies," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 533-555, March.
    10. Engwerda, J.C. & Salmah, Y., 2008. "The Open-Loop Linear Quadratic Differential Game for Index One Descriptor Systems," Discussion Paper 2008-35, Tilburg University, Center for Economic Research.
    11. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    12. Engwerda, J.C., 1999. "The Solution Set of the n-Player Scalar Feedback Nash Algebraic Riccati Equations," Other publications TiSEM 63f19390-d8dd-4c84-9b96-7, Tilburg University, School of Economics and Management.
    13. Dawid, Herbert & Keoula, Michel Y. & Kopel, Michael & Kort, Peter M., 2015. "Product innovation incentives by an incumbent firm: A dynamic analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 411-438.
    14. Halkos, George & Papageorgiou, George, 2015. "Dynamical methods in Environmental and Resource Economics," MPRA Paper 67845, University Library of Munich, Germany.
    15. Kogan, Konstantin & El Ouardighi, Fouad & Herbon, Avi, 2017. "Production with learning and forgetting in a competitive environment," International Journal of Production Economics, Elsevier, vol. 189(C), pages 52-62.
    16. Jacob Engwerda, 2007. "Algorithms for computing Nash equilibria in deterministic LQ games," Computational Management Science, Springer, vol. 4(2), pages 113-140, April.
    17. El Ouardighi, Fouad & Sim, Jeongeun & Kim, Bowon, 2021. "Pollution accumulation and abatement policies in two supply chains under vertical and horizontal competition and strategy types," Omega, Elsevier, vol. 98(C).
    18. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2018. "Commitment-Based Equilibrium Environmental Strategies Under Time-Dependent Absorption Efficiency," Group Decision and Negotiation, Springer, vol. 27(2), pages 235-249, April.
    19. Engwerda, J.C. & Salmah, Y. & Wijayanti, I.E., 2009. "The Open-Loop Discounted Linear Quadratic Differential Game for Regular Higher Order Index Descriptor Systems," Discussion Paper 2009-1, Tilburg University, Center for Economic Research.
    20. George E. Halkos & George J. Papageorgiou, 2021. "Some Results on the Control of Polluting Firms According to Dynamic Nash and Stackelberg Patterns," Economies, MDPI, vol. 9(2), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0188-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.