Advanced Search
MyIDEAS: Login to save this article or follow this journal

Harsanyi power solutions for graph-restricted games

Contents:

Author Info

  • René Brink

    ()

  • Gerard Laan

    ()

  • Vitaly Pruzhansky

    ()

Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. A solution for TU-games assigns a set of payoff distributions (possibly empty or consisting of a unique element) to every TU-game. Harsanyi solutions are solutions that are based on distributing dividends. In this paper we consider games with limited communication structure in which the edges or links of an undirected graph on the set of players represent binary communication links between the players such that players can cooperate if and only if they are connected. For such games we discuss Harsanyi solutions whose dividend shares are based on power measures for nodes in corresponding communication graphs. Special attention is given to the Harsanyi degree solution which equals the Shapley value on the class of complete graph games (i.e. the class of TU-games) and equals the position value on the class of cycle-free graph games. Another example is the Harsanyi power solution that is based on the equal power measure, which turns out to be the Myerson value. Various applications of our results are provided.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00182-009-0220-3
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 40 (2011)
Issue (Month): 1 (February)
Pages: 87-110

as in new window
Handle: RePEc:spr:jogath:v:40:y:2011:i:1:p:87-110

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Cooperative TU-game; Harsanyi dividend; Communication structure; Power measure; Position value; Myerson value; C71;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer, vol. 33(4), pages 505-514, November.
  2. Valeri Vasil'ev & Gerard van der Laan, 2001. "The Harsanyi Set for Cooperative TU-Games," Tinbergen Institute Discussion Papers 01-004/1, Tinbergen Institute.
  3. Endre Bjørndal & Herbert Hamers & Maurice Koster, 2004. "Cost allocation in a bank ATM network," Computational Statistics, Springer, vol. 59(3), pages 405-418, 07.
  4. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer, vol. 29(1), pages 23-38.
  5. Pradeep Dubey & Robert J. Weber, 1977. "Probabilistic Values for Games," Cowles Foundation Discussion Papers 471, Cowles Foundation for Research in Economics, Yale University.
  6. Gilles, R.P. & Owen, G. & Brink, J.R. van den, 1991. "Games with permission structures: The conjunctive approach," Discussion Paper 1991-14, Tilburg University, Center for Economic Research.
  7. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Open Access publications from Tilburg University urn:nbn:nl:ui:12-154855, Tilburg University.
  8. Ehud Kalai & Dov Samet, 1983. "On Weighted Shapley Values," Discussion Papers 602, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  9. RenÊ van den Brink, 1997. "An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure," International Journal of Game Theory, Springer, vol. 26(1), pages 27-43.
  10. van den Nouweland, A. & Borm, P. & van Golstein, W. & Bruinderink, R.G. & Tijs, S., 1994. "A Game Theoretic Approach to Problems in Telecommunication," Papers 9407, Tilburg - Center for Economic Research.
  11. Graham, Daniel A & Marshall, Robert C, 1987. "Collusive Bidder Behavior at Single-Object Second-Price and English Auctions," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1217-39, December.
  12. Hamiache, Gerard, 1999. "A Value with Incomplete Communication," Games and Economic Behavior, Elsevier, vol. 26(1), pages 59-78, January.
  13. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
  14. P. Herings & Gerard Laan & Dolf Talman, 2005. "The positional power of nodes in digraphs," Social Choice and Welfare, Springer, vol. 24(3), pages 439-454, 06.
  15. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  16. Gomez, Daniel & Gonzalez-Aranguena, Enrique & Manuel, Conrado & Owen, Guillermo & del Pozo, Monica & Tejada, Juan, 2003. "Centrality and power in social networks: a game theoretic approach," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 27-54, August.
  17. Brânzei, R. & Fragnelli, V. & Tijs, S.H., 2000. "Tree-connected Peer Group Situations and Peer Group Games," Discussion Paper 2000-117, Tilburg University, Center for Economic Research.
  18. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 2003. "Harsanyi Solutions in Line-graph Games," Tinbergen Institute Discussion Papers 03-076/1, Tinbergen Institute.
  19. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
  20. Daniel Gómez & Enrique Gonz{\'a}lez-Arangüena & Conrado Manuel & Guillermo Owen & Monica Del Pozo, 2004. "A Unified Approach To The Myerson Value And The Position Value," Theory and Decision, Springer, vol. 56(2_2), pages 63-76, 02.
  21. Daniel Gómez & Enrique Gonz{\’a}lez-Arangüena & Conrado Manuel & Guillermo Owen & Monica Del Pozo, 2004. "A Unified Approach To The Myerson Value And The Position Value," Theory and Decision, Springer, vol. 56(1), pages 63-76, 04.
  22. Monderer, Dov & Samet, Dov & Shapley, Lloyd S, 1992. "Weighted Values and the Core," International Journal of Game Theory, Springer, vol. 21(1), pages 27-39.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:40:y:2011:i:1:p:87-110. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.