Advanced Search
MyIDEAS: Login

Stochastic dominance equilibria in two-person noncooperative games

Contents:

Author Info

  • Andres Perea
  • Hans Peters

    ()

  • Tim Schulteis
  • Dries Vermeulen

Abstract

Two-person noncooperative games with finitely many pure strategies and ordinal preferences over pure outcomes are considered, in which probability distributions resulting from mixed strategies are evaluated according to t-degree stochastic dominance. A t-best reply is a strategy that induces a t-degree stochastically undominated distribution, and a t-equilibrium is a pair of t-best replies. The paper provides a characterization and existence proofs of t-equilibria in terms of representing utility functions, and shows that for t becoming large-which can be interpreted as the players becoming more risk averse-behavior converges to a specific form of max-min play. More precisely, this means that in the limit each player puts all weight on a strategy that maximizes the worst outcome for the opponent, within the supports of the strategies in the limiting sequenceof t-equilibria.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00182-006-0035-4
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 34 (2006)
Issue (Month): 4 (November)
Pages: 457-473

as in new window
Handle: RePEc:spr:jogath:v:34:y:2006:i:4:p:457-473

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Stochastic dominance; Two-person noncooperative games;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Fishburn, Peter C., 1976. "Continua of stochastic dominance relations for bounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 295-311, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jacques Durieu & Hans Haller & Nicolas Quérou & Philippe Solal, 2007. "Ordinal Games," Post-Print ujm-00194794, HAL.
  2. Peters, Hans & Schulteis, Tim & Vermeulen, Dries, 2007. "Generalized stochastic dominance and bad outcome aversion," Research Memorandum 031, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:34:y:2006:i:4:p:457-473. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.