Advanced Search
MyIDEAS: Login to save this article or follow this journal

On the NP-completeness of finding an optimal strategy in games with common payoffs

Contents:

Author Info

  • Francis Chu

    (Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA)

  • Joseph Halpern

    (Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA)

Abstract

Consider a very simple class of (finite) games: after an initial move by nature, each player makes one move. Moreover, the players have common interests: at each node, all the players get the same payoff. We show that the problem of determining whether there exists a joint strategy where each player has an expected payoff of at least r is NP-complete as a function of the number of nodes in the extensive-form representation of the game.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://link.springer.de/link/service/journals/00182/papers/1030001/10300099.pdf
Download Restriction: Access to the full text of the articles in this series is restricted

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 30 (2001)
Issue (Month): 1 ()
Pages: 99-106

as in new window
Handle: RePEc:spr:jogath:v:30:y:2001:i:1:p:99-106

Note: Received January 2001/Final version May 1, 2001
Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tim Roughgarden, 2010. "Computing equilibria: a computational complexity perspective," Economic Theory, Springer, vol. 42(1), pages 193-236, January.
  2. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
  3. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:30:y:2001:i:1:p:99-106. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.