Advanced Search
MyIDEAS: Login to save this article or follow this journal

An algebraic theory of portfolio allocation

Contents:

Author Info

  • David A. Hennessy
  • Harvey E. Lapan

Abstract

Using group and majorization theory, we explore what can be established about allocation of funds among assets when asymmetries in the returns vector are carefully controlled. The key insight is that preferences over allocations can be partially ordered via majorized convex hulls that have been generated by a permutation group. Group transitivity suffices to ensure complete portfolio diversification. Point-wise stabilizer subgroups admit sectoral separability in fund allocations. We also bound the admissible allocation vector by a set of linear constraints the coefficients of which are determined by group operations on location and scale asymmetries in the rate of returns vector. For a distribution that is symmetric under a reflection group, the linear constraints may be further strengthened whenever there exists an hyperplane that separates convex sets. Copyright Springer-Verlag Berlin Heidelberg 2003

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00199-002-0284-9
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Economic Theory.

Volume (Year): 22 (2003)
Issue (Month): 1 (08)
Pages: 193-210

as in new window
Handle: RePEc:spr:joecth:v:22:y:2003:i:1:p:193-210

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00199/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Keywords and Phrases: Convex hull; Group majorization; Permutation group; Point-wise stabilizer subgroup; Separability; Transitive group.; JEL Classification Numbers: G11; D8; C6.;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ibragimov, Rustam & Ibragimov, Marat, 2007. "Market Demand Elasticity and Income Inequality," Scholarly Articles 2623728, Harvard University Department of Economics.
  2. Hennessy, David A., 2004. "Orthogonal Subgroups for Portfolio Choice," Staff General Research Papers 11993, Iowa State University, Department of Economics.
  3. Hennessy, David A. & Lapan, Harvey E., 2009. "Harmonic symmetries of imperfect competition on circular city," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 124-146, January.
  4. repec:ebl:ecbull:v:7:y:2004:i:1:p:1-7 is not listed on IDEAS

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:22:y:2003:i:1:p:193-210. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.