Advanced Search
MyIDEAS: Login to save this article or follow this journal

Numerical and Monte Carlo Bethe ansatz method: 1D Heisenberg model

Contents:

Author Info

  • S.-J. Gu

    ()

  • N. M.R. Peres
  • Y.-Q. Li
Registered author(s):

    Abstract

    In this paper we present two new numerical methods for studying thermodynamic quantities of integrable models. As an example of the effectiveness of these two approaches, results from numerical solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained by the thermodynamic Bethe ansatz (TBA). As an application of these ideas, the pairwise entanglement between two nearest neighbors at finite temperatures is studied. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1140/epjb/e2005-00390-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

    Volume (Year): 48 (2005)
    Issue (Month): 2 (November)
    Pages: 157-165

    as in new window
    Handle: RePEc:spr:eurphb:v:48:y:2005:i:2:p:157-165

    Contact details of provider:
    Web page: http://www.springer.com/economics/journal/10051

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:48:y:2005:i:2:p:157-165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.