Advanced Search
MyIDEAS: Login to save this article or follow this journal

Zipf’s law for fractal voids and a new void-finder


Author Info

  • J. Gaite


Registered author(s):


    Voids are a prominent feature of fractal point distributions but there is no precise definition of what is a void (except in one dimension). Here we propose a definition of voids that uses methods of discrete stochastic geometry, in particular, Delaunay and Voronoi tessellations, and we construct a new algorithm to search for voids in a point set. We find and rank-order the voids of suitable examples of fractal point sets in one and two dimensions to test whether Zipf’s power-law holds. We conclude affirmatively and, furthermore, that the rank-ordering of voids conveys similar information to the number-radius function, as regards the scaling regime and the transition to homogeneity. So it is an alternative tool in the analysis of fractal point distributions with crossover to homogeneity and, in particular, of the distribution of galaxies. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

    Volume (Year): 47 (2005)
    Issue (Month): 1 (09)
    Pages: 93-98

    as in new window
    Handle: RePEc:spr:eurphb:v:47:y:2005:i:1:p:93-98

    Contact details of provider:
    Web page:

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:47:y:2005:i:1:p:93-98. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.