Advanced Search
MyIDEAS: Login

Fractal geometry of critical Potts clusters

Contents:

Author Info

  • J. Asikainen

    ()

  • A. Aharony
  • B. Mandelbrot
  • E. Rausch
  • J.-P. Hovi

Abstract

Numerical simulations on the total mass, the numbers of bonds on the hull, external perimeter, singly connected bonds and gates into large fjords of the Fortuin-Kasteleyn clusters for two-dimensional q-state Potts models at criticality are presented. The data are found consistent with the recently derived corrections-to-scaling theory. A new method for thermalization of spin systems is presented. The method allows a speed up of an order of magnetization for large lattices. We also show snapshots of the Potts clusters for different values of q, which clearly illustrate the fact that the clusters become more compact as q increases, and that this affects the fractal dimensions in a monotonic way. However, the approach to the asymptotic region is slow, and the present range of the data does not allow a unique identification of the exact correction exponents. Copyright Springer-Verlag Berlin/Heidelberg 2003

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1140/epjb/e2003-00247-7
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal The European Physical Journal B - Condensed Matter and Complex Systems.

Volume (Year): 34 (2003)
Issue (Month): 4 (August)
Pages: 479-487

as in new window
Handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:479-487

Contact details of provider:
Web page: http://www.springer.com/economics/journal/10051

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:479-487. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.