Advanced Search
MyIDEAS: Login

The DYNAMO-HIA Model: An Efficient Implementation of a Risk Factor/Chronic Disease Markov Model for Use in Health Impact Assessment (HIA)

Contents:

Author Info

  • Hendriek Boshuizen

    ()

  • Stefan Lhachimi
  • Pieter Baal
  • Rudolf Hoogenveen
  • Henriette Smit
  • Johan Mackenbach
  • Wilma Nusselder
Registered author(s):

    Abstract

    In Health Impact Assessment (HIA), or priority-setting for health policy, effects of risk factors (exposures) on health need to be modeled, such as with a Markov model, in which exposure influences mortality and disease incidence rates. Because many risk factors are related to a variety of chronic diseases, these Markov models potentially contain a large number of states (risk factor and disease combinations), providing a challenge both technically (keeping down execution time and memory use) and practically (estimating the model parameters and retaining transparency). To meet this challenge, we propose an approach that combines micro-simulation of the exposure information with macro-simulation of the diseases and survival. This approach allows users to simulate exposure in detail while avoiding the need for large simulated populations because of the relative rareness of chronic disease events. Further efficiency is gained by splitting the disease state space into smaller spaces, each of which contains a cluster of diseases that is independent of the other clusters. The challenge of feasible input data requirements is met by including parameter calculation routines, which use marginal population data to estimate the transitions between states. As an illustration, we present the recently developed model DYNAMO-HIA ( DYNAMIC MODEL for Health Impact Assessment) that implements this approach. Copyright Population Association of America 2012

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1007/s13524-012-0122-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Demography.

    Volume (Year): 49 (2012)
    Issue (Month): 4 (November)
    Pages: 1259-1283

    as in new window
    Handle: RePEc:spr:demogr:v:49:y:2012:i:4:p:1259-1283

    Contact details of provider:
    Web page: http://www.springer.com/economics/journal/13524

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords: Health impact assessment; Markov models; Matrix exponential; Micro-simulation; Chronic disease modeling;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Jan Barendregt & Gerrit Van Oortmarssen & Ben Van Hout & Jacqueline M. Van Den Bosch & Luc Bonneux, 1998. "Coping with multiple morbidity in a life table," Mathematical Population Studies, Taylor & Francis Journals, vol. 7(1), pages 29-49.
    2. S. Gallivan & M. Utley & M. Jit & C. Pagel, 2007. "A Computational Algorithm Associated with Patient Progress Modelling," Computational Management Science, Springer, vol. 4(3), pages 283-299, July.
    3. Eileen Crimmins & Mark Hayward & Yasuhiko Saito, 1994. "Changing mortality and morbidity rates and the health status and life expectancy of the older population," Demography, Springer, vol. 31(1), pages 159-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:demogr:v:49:y:2012:i:4:p:1259-1283. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.