IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i1p37-50.html
   My bibliography  Save this article

Music and timbre segmentation by recursive constrained K-means clustering

Author

Listed:
  • Sebastian Krey
  • Uwe Ligges
  • Friedrich Leisch

Abstract

Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291, 2011 ). We propose to use order constrained solutions in K-means clustering to stabilize the results and improve the interpretability of the clustering. With this method a further improvement of the misclassification error in the aforementioned instrument recognition task is possible. Using order constrained K-means the musical structure of a whole piece of popular music can be extracted automatically. Visualizing the distances of the feature vectors through a self distance matrix allows for an easy visual verification of the result. For the estimation of the right number of clusters, we propose to calculate the adjusted Rand indices of bootstrap samples of the data and base the decision on the minimum of a robust version of the coefficient of variation. In addition to the average stability (measured through the adjusted Rand index) this approach takes the variation between the different bootstrap samples into account. Copyright Springer-Verlag 2014

Suggested Citation

  • Sebastian Krey & Uwe Ligges & Friedrich Leisch, 2014. "Music and timbre segmentation by recursive constrained K-means clustering," Computational Statistics, Springer, vol. 29(1), pages 37-50, February.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:1:p:37-50
    DOI: 10.1007/s00180-012-0358-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0358-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0358-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leisch, Friedrich, 2006. "A toolbox for K-centroids cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 526-544, November.
    2. Sara Dolnicar & Friedrich Leisch, 2010. "Evaluation of structure and reproducibility of cluster solutions using the bootstrap," Marketing Letters, Springer, vol. 21(1), pages 83-101, March.
    3. Douglas Steinley & Lawrence Hubert, 2008. "Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 647-664, December.
    4. Uwe Ligges & Sebastian Krey, 2011. "Feature clustering for instrument classification," Computational Statistics, Springer, vol. 26(2), pages 279-291, June.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Binder & Hans Kestler & Matthias Schmid, 2014. "Proceedings of Reisensburg 2011," Computational Statistics, Springer, vol. 29(1), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    2. Hajibaba, Homa & Gretzel, Ulrike & Leisch, Friedrich & Dolnicar, Sara, 2015. "Crisis-resistant tourists," Annals of Tourism Research, Elsevier, vol. 53(C), pages 46-60.
    3. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    4. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    5. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    6. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    7. Sara Dolnicar & Friedrich Leisch, 2017. "Using segment level stability to select target segments in data-driven market segmentation studies," Marketing Letters, Springer, vol. 28(3), pages 423-436, September.
    8. Pierpaolo D'Urso & Girish Prayag & Marta Disegna & Riccardo Massari, 2013. "Market Segmentation using Bagged Fuzzy C–Means (BFCM): Destination Image of Western Europe among Chinese Travellers," BEMPS - Bozen Economics & Management Paper Series BEMPS13, Faculty of Economics and Management at the Free University of Bozen.
    9. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    10. Minji Kim & Hee-Seok Oh & Yaeji Lim, 2023. "Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 407-431, July.
    11. Grn, Bettina & Leisch, Friedrich, 2009. "Dealing with label switching in mixture models under genuine multimodality," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 851-861, May.
    12. Naoto Yamashita & Kohei Adachi, 2020. "A Modified k-Means Clustering Procedure for Obtaining a Cardinality-Constrained Centroid Matrix," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 509-525, July.
    13. Sara Dolnicar & Friedrich Leisch, 2010. "Evaluation of structure and reproducibility of cluster solutions using the bootstrap," Marketing Letters, Springer, vol. 21(1), pages 83-101, March.
    14. Yasemin Boztug & Thomas Reutterer, 2006. "A Combined Approach for Segment-Specific Analysis of Market Basket Data," SFB 649 Discussion Papers SFB649DP2006-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    15. Rainer Dangl & Friedrich Leisch, 2020. "Effects of Resampling in Determining the Number of Clusters in a Data Set," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 558-583, October.
    16. Alicja Grześkowiak, 2016. "Assessment of Participation in Cultural Activities in Poland by Selected Multivariate Methods," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 3, January -.
    17. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    18. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    19. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    20. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:1:p:37-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.