IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v121y2013i2p161-175.html
   My bibliography  Save this article

Potential for forest carbon plantings to offset greenhouse emissions in Australia: economics and constraints to implementation

Author

Listed:
  • P. Polglase
  • A. Reeson
  • C. Hawkins
  • K. Paul
  • A. Siggins
  • J. Turner
  • D. Crawford
  • T. Jovanovic
  • T. Hobbs
  • K. Opie
  • J. Carwardine
  • A. Almeida

Abstract

The theoretical potential for carbon forests to off-set greenhouse gas emissions may be high but the achievable rate is influenced by a range of economic and social factors. Economic returns (net present value, NPV) were calculated spatially across the cleared land area in Australia for ‘environmental carbon plantings’. A total of 105 scenarios were run by varying discount rate, carbon price, rate of carbon sequestration and costs for plantation establishment licenses for water interception. The area for which NPV was positive ranged from zero ha for tightly constrained scenarios to almost the whole of the cleared land (104 M ha) for lower discount rate and highest carbon price. For the most plausible assumptions for cost of establishment and commercial discount rate, no areas were identified as profitable until a carbon price of AUD$40 t CO 2 −1 was reached. The many practical constraints to plantation establishment mean that it will likely take decades to have significant impact on emission reductions. Every 1 M ha of carbon forests established would offset about 1.4 % of Australia’s year 2000 emissions (or 7.4 Mt CO 2 year −1 ) when an average rate of sequestration per ha was reached. All studies that predict large areas of potentially profitable land for carbon forestry need to be tempered by the realities that constrain land use change. In Australia and globally, carbon plantings can be a useful activity to help mitigate emissions and restore landscapes but it should be viewed as a long-term project in which co-benefits such as biodiversity enhancement can be realised. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • P. Polglase & A. Reeson & C. Hawkins & K. Paul & A. Siggins & J. Turner & D. Crawford & T. Jovanovic & T. Hobbs & K. Opie & J. Carwardine & A. Almeida, 2013. "Potential for forest carbon plantings to offset greenhouse emissions in Australia: economics and constraints to implementation," Climatic Change, Springer, vol. 121(2), pages 161-175, November.
  • Handle: RePEc:spr:climat:v:121:y:2013:i:2:p:161-175
    DOI: 10.1007/s10584-013-0882-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0882-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0882-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peggy Schrobback & David Adamson & John Quiggin, 2009. "Turning Water into Carbon: Carbon sequestration vs. water flow in the Murray-Darling Basin," Murray-Darling Program Working Papers WP2M09, Risk and Sustainable Management Group, University of Queensland.
    2. Gollier, Christian & Weitzman, Martin L., 2010. "How should the distant future be discounted when discount rates are uncertain?," Economics Letters, Elsevier, vol. 107(3), pages 350-353, June.
    3. Deying Xu & Xiao-Quan Zhang & Zuomin Shi, 2001. "Mitigation Potential for Carbon Sequestration Through Forestry Activities in Southern and Eastern China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 6(3), pages 213-232, September.
    4. Peggy Schrobback & David Adamson & John Quiggin, 2011. "Turning Water into Carbon: Carbon Sequestration and Water Flow in the Murray–Darling Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 23-45, May.
    5. Weitzman, Martin L., 1998. "Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 201-208, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regan, Courtney M. & Connor, Jeffery D. & Summers, David M. & Settre, Claire & O’Connor, Patrick J. & Cavagnaro, Timothy R., 2020. "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," Land Use Policy, Elsevier, vol. 97(C).
    2. Philip Wallis & Michael Ward & Jamie Pittock & Karen Hussey & Howard Bamsey & Amandine Denis & Steven Kenway & Carey King & Shahbaz Mushtaq & Monique Retamal & Brian Spies, 2014. "The water impacts of climate change mitigation measures," Climatic Change, Springer, vol. 125(2), pages 209-220, July.
    3. Mayberry, Dianne & Bartlett, Harriet & Moss, Jonathan & Davison, Thomas & Herrero, Mario, 2019. "Pathways to carbon-neutrality for the Australian red meat sector," Agricultural Systems, Elsevier, vol. 175(C), pages 13-21.
    4. Shu Wang & Fenglian Liu, 2023. "Spatiotemporal Evolution of Land Use Efficiency in Southwest Mountain Area of China: A Case Study of Yunnan Province," Agriculture, MDPI, vol. 13(7), pages 1-24, July.
    5. Ross Kingwell, 2021. "Agriculture’s carbon‐neutral challenge: The case of Western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 566-595, July.
    6. Fábio de Oliveira Neves & Eduardo Gomes Salgado & Arthur Arnoni Occhiutto & José Augusto Zorel & Ernandes Benedito Pereira, 2024. "Assessment Method of Bioenergy in the Industrial Sector," International Journal of Business and Management, Canadian Center of Science and Education, vol. 18(6), pages 143-143, January.
    7. Salles, Thiago Taglialegna & Nogueira, Denismar Alves & Beijo, Luiz Alberto & Silva, Liniker Fernandes da, 2019. "Bayesian approach and extreme value theory in economic analysis of forestry projects," Forest Policy and Economics, Elsevier, vol. 105(C), pages 64-71.
    8. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    9. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    10. Yuyang Yu & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang, 2019. "Estimation of the Value of Ecosystem Carbon Sequestration Services under Different Scenarios in the Central China (the Qinling-Daba Mountain Area)," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    11. Dong, Ming & Bryan, Brett A. & Connor, Jeffery D. & Nolan, Martin & Gao, Lei, 2015. "Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling," Ecosystem Services, Elsevier, vol. 15(C), pages 63-74.
    12. Nordblom, T.L. & Hume, I.H. & Finlayson, J.D. & Pannell, D.J. & Holland, J.E. & McClintock, A.J., 2015. "Distributional consequences of upstream tree plantations on downstream water users in a Public–Private Benefit Framework," Agricultural Systems, Elsevier, vol. 139(C), pages 271-281.
    13. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gollier, Christian, 2016. "Gamma discounters are short-termist," Journal of Public Economics, Elsevier, vol. 142(C), pages 83-90.
    2. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    3. Bernard Lapeyre & Emile Quinet, 2017. "A Simple GDP-based Model for Public Investments at Risk," Post-Print hal-01666574, HAL.
    4. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    5. Traeger, Christian P., 2012. "What's the Rate? Disentangling the Weitzman and the Gollier Effect," CUDARE Working Papers 121932, University of California, Berkeley, Department of Agricultural and Resource Economics.
    6. Ram Fishman, 2019. "Heterogeneous Patience, Bargaining Power and Investment in Future Public Goods," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1101-1107, August.
    7. Mark C. Freeman & Ben Groom, 2015. "Positively Gamma Discounting: Combining the Opinions of Experts on the Social Discount Rate," Economic Journal, Royal Economic Society, vol. 125(585), pages 1015-1024, June.
    8. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    9. Szekeres, Szabolcs, 2016. "Testing Gollier and Weitzman’s Solution of the “Weitzman-Gollier Puzzle”," MPRA Paper 72593, University Library of Munich, Germany.
    10. Lawrence H. Goulder & Roberton C. Williams, 2012. "The Choice Of Discount Rate For Climate Change Policy Evaluation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-18.
    11. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    12. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    13. Bartolini, Stefano & Sarracino, Francesco, 2018. "Do People Care About Future Generations? Derived Preferences from Happiness Data," Ecological Economics, Elsevier, vol. 143(C), pages 253-275.
    14. Fesselmeyer, Eric & Liu, Haoming & Salvo, Alberto, 2016. "How Do Households Discount over Centuries? Evidence from Singapore's Private Housing Market," IZA Discussion Papers 9862, Institute of Labor Economics (IZA).
    15. Weitzman, Martin L., 2010. "Risk-adjusted gamma discounting," Journal of Environmental Economics and Management, Elsevier, vol. 60(1), pages 1-13, July.
    16. Aline Chiabai & Ibon Galarraga & Anil Markandya & Unai Pascual, 2013. "The Equivalency Principle for Discounting the Value of Natural Assets: An Application to an Investment Project in the Basque Coast," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(4), pages 535-550, December.
    17. Jamison Dean T. & Jamison Julian, 2011. "Characterizing the Amount and Speed of Discounting Procedures," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(2), pages 1-56, April.
    18. Gollier, Christian, 2012. "Asset pricing with uncertain betas: A long-term perspective," IDEI Working Papers 752, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Tas Thamo & David J. Pannell & Marit E. Kragt & Michael J. Robertson & Maksym Polyakov, 2017. "Dynamics and the economics of carbon sequestration: common oversights and their implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1095-1111, October.
    20. Anchugina, Nina & Ryan, Matthew & Slinko, Arkadii, 2017. "Hyperbolic discounting of the far-distant future," Economics Letters, Elsevier, vol. 155(C), pages 140-143.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:121:y:2013:i:2:p:161-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.