IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i3p919-932.html
   My bibliography  Save this article

Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China

Author

Listed:
  • Jie Yin
  • Dapeng Yu
  • Zhane Yin
  • Jun Wang
  • Shiyuan Xu

Abstract

This paper presents a scenario-based study that investigates the interaction between sea-level rise and land subsidence on the storm tides induced fluvial flooding in the Huangpu river floodplain. Two projections of relative sea level rise (RSLR) were presented (2030 and 2050). Water level projections at the gauging stations for different return periods were generated using a simplified algebraic summation of the eustatic sea-level rise, land subsidence and storm tide level. Frequency analysis with relative sea level rise taken into account shows that land subsidence contributes to the majority of the RSLR (between 60 % and 70 %). Furthermore, a 1D/2D coupled flood inundation model (FloodMap) was used to predict the river flow and flood inundation, after calibration using the August 1997 flood event. Numerical simulation with projected RSLR suggests that, the combined impact of eustatic sea-level rise and land subsidence would be a significantly reduced flood return period for a given water level, thus effective degradation of the current flood defences. In the absence of adaptation measures, storm flooding will cause up to 40 % more inundation, particularly in the upstream of the river. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:3:p:919-932
    DOI: 10.1007/s10584-013-0749-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0749-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0749-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    2. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    3. Muh Marfai & Lorenz King, 2008. "Tidal inundation mapping under enhanced land subsidence in Semarang, Central Java Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 93-109, January.
    4. Xiaodan Wu & Dapeng Yu & Zhongyuan Chen & Robert Wilby, 2012. "An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 305-323, September.
    5. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    6. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    2. Anamaria Bukvic & Julia Gohlke & Aishwarya Borate & Jessica Suggs, 2018. "Aging in Flood-Prone Coastal Areas: Discerning the Health and Well-Being Risk for Older Residents," IJERPH, MDPI, vol. 15(12), pages 1-25, December.
    3. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
    4. Jiayi Fang & Robert J. Nicholls & Sally Brown & Daniel Lincke & Jochen Hinkel & Athanasios T. Vafeidis & Shiqiang Du & Qing Zhao & Min Liu & Peijun Shi, 2022. "Benefits of subsidence control for coastal flooding in China," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yiche Wang & Hai Li & Yong Shi & Qian Yao, 2022. "A Study on Spatial Accessibility of the Urban Stadium Emergency Response under the Flood Disaster Scenario," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    6. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    7. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    8. P. M. Orton & F. R. Conticello & F. Cioffi & T. M. Hall & N. Georgas & U. Lall & A. F. Blumberg & K. MacManus, 2020. "Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 729-757, June.
    9. Lifen Xu & Xiangwei Meng & Xuegong Xu, 2014. "Natural hazard chain research in China: A review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1631-1659, January.
    10. Xilin Zhang & Dongdong Chu & Jicai Zhang, 2021. "Effects of nonlinear terms and topography in a storm surge model along the southeastern coast of China: a case study of Typhoon Chan-hom," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 551-574, May.
    11. Yu-Shou Su, 2016. "Urban Flood Resilience in New York City, London, Randstad, Tokyo, Shanghai, and Taipei," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 92-108, March.
    12. Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    13. Xinmeng Shan & Jiahong Wen & Min Zhang & Luyang Wang & Qian Ke & Weijiang Li & Shiqiang Du & Yong Shi & Kun Chen & Banggu Liao & Xiande Li & Hui Xu, 2019. "Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai," Sustainability, MDPI, vol. 11(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Hallegatte & Jan Corfee-Morlot, 2011. "Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction," Climatic Change, Springer, vol. 104(1), pages 1-12, January.
    2. Stéphane Hallegatte & Fanny Henriet & Jan Corfee-Morlot, 2011. "The economics of climate change impacts and policy benefits at city scale: a conceptual framework," Climatic Change, Springer, vol. 104(1), pages 51-87, January.
    3. Hirte, Georg & Nitzsche, Eric & Tscharaktschiew, Stefan, 2018. "Optimal adaptation in cities," Land Use Policy, Elsevier, vol. 73(C), pages 147-169.
    4. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    5. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    6. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    7. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    8. Arna Nishita Nithila & Paromita Shome & Ishrat Islam, 2022. "Waterlogging induced loss and damage assessment of urban households in the monsoon period: a case study of Dhaka, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1565-1597, February.
    9. Kennedy, Christopher & Corfee-Morlot, Jan, 2013. "Past performance and future needs for low carbon climate resilient infrastructure– An investment perspective," Energy Policy, Elsevier, vol. 59(C), pages 773-783.
    10. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    11. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    12. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    13. S. Niggol Seo, 2017. "Measuring Policy Benefits Of The Cyclone Shelter Program In The North Indian Ocean: Protection From Intense Winds Or High Storm Surges?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-18, November.
    14. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    15. Stéphane Hallegatte, 2012. "An exploration of the link between development, economic growth, and natural risk," Post-Print hal-00802047, HAL.
    16. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    17. Samiksha S. V. & P. Vethamony & Prasad K. Bhaskaran & P. Pednekar & M. Jishad & R. Arthur James, 2019. "Attenuation of Wave Energy Due to Mangrove Vegetation off Mumbai, India," Energies, MDPI, vol. 12(22), pages 1-16, November.
    18. Keqi Zhang & Yuepeng Li & Huiqing Liu & Hongzhou Xu & Jian Shen, 2013. "Comparison of three methods for estimating the sea level rise effect on storm surge flooding," Climatic Change, Springer, vol. 118(2), pages 487-500, May.
    19. Archana Patankar & Anand Patwardhan, 2016. "Estimating the uninsured losses due to extreme weather events and implications for informal sector vulnerability: a case study of Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 285-310, January.
    20. Archana Patankar & Anand Patwardhan, 2016. "Estimating the uninsured losses due to extreme weather events and implications for informal sector vulnerability: a case study of Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 285-310, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:3:p:919-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.