IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i1p115-133.html
   My bibliography  Save this article

Change and variability in sea ice during the 2007–2008 Canadian International Polar Year program

Author

Listed:
  • David Barber
  • Matthew Asplin
  • Richard Raddatz
  • Lauren Candlish
  • Scot Nickels
  • Stephanie Meakin
  • Klaus Hochheim
  • Jennifer Lukovich
  • Ryan Galley
  • Simon Prinsenberg

Abstract

In this paper we describe sea ice change and variability during the Canadian International Polar Year (IPY) program and examine several regional and hemispheric causes of this change. In a companion paper (Barber et al., Climate Change 2012 ) we present an overview of the consequences of this observed change and variability on ecosystem function, climatically relevant gas exchange, habitats of primary and apex predators, and impacts on northern peoples. Sea ice-themed research projects within the fourth IPY were designed to be among the most diverse international science programs. They greatly enhanced the exchange of Inuit knowledge and scientific ideas across nations and disciplines. This interdisciplinary and cultural exchange helped to explain and communicate the impacts of a transition of the Arctic Ocean and ecosystem to a seasonally ice-free state, the commensurate replacement of perennial with annual sea ice types and the causes and consequences of this globally significant metamorphosis. This paper presents a synthesis of scientific sea ice research and traditional knowledge results from Canadian-led IPY projects between 2007 and 2009. In particular, a summary of sea ice trends, basin-wide and regional, is presented in conjunction with Inuit knowledge of sea ice, gathered from communities in northern Canada. We focus on the recent observed changes in sea ice and discuss some of the causes of this change including atmospheric and oceanic forcing of both dynamic and thermodynamic forcing on the ice. Pertinent results include: 1) In the Amundsen Gulf, at the western end of the Northwest Passage, open water persists longer than normal and winter sea ice is thinner and more mobile. 2) Large areas of summer sea ice are becoming heavily decayed during summer and can be broken up by long-period waves being generated in the now extensive open water areas of the Chukchi Sea. 3) Cyclones play an important role in flaw leads—regions of open water between pack ice and land-fast ice. They delay the formation of new ice and the growth of multi-year ice. 4) Feedbacks involving the increased period of open water, long-period wave generation, increased open-ocean roughness, and the precipitation of autumn snow are all partially responsible for the observed reduction in multiyear sea ice. 5) The atmosphere is observed as remaining generally stable throughout the winter, preventing vertical entrainment of moisture above the surface. Copyright The Author(s) 2012

Suggested Citation

  • David Barber & Matthew Asplin & Richard Raddatz & Lauren Candlish & Scot Nickels & Stephanie Meakin & Klaus Hochheim & Jennifer Lukovich & Ryan Galley & Simon Prinsenberg, 2012. "Change and variability in sea ice during the 2007–2008 Canadian International Polar Year program," Climatic Change, Springer, vol. 115(1), pages 115-133, November.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:1:p:115-133
    DOI: 10.1007/s10584-012-0477-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0477-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0477-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Perrie & Zhenxia Long & Hayley Hung & Amanda Cole & Alexandra Steffen & Ashu Dastoor & Dorothy Durnford & Jianmin Ma & Jan Bottenheim & Stoyka Netcheva & Ralf Staebler & James Drummond & N. O’, 2012. "Selected topics in arctic atmosphere and climate," Climatic Change, Springer, vol. 115(1), pages 35-58, November.
    2. Seymour Laxon & Neil Peacock & Doug Smith, 2003. "High interannual variability of sea ice thickness in the Arctic region," Nature, Nature, vol. 425(6961), pages 947-950, October.
    3. Christophe Kinnard & Christian M. Zdanowicz & David A. Fisher & Elisabeth Isaksson & Anne de Vernal & Lonnie G. Thompson, 2011. "Reconstructed changes in Arctic sea ice over the past 1,450 years," Nature, Nature, vol. 479(7374), pages 509-512, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Barber & Matthew Asplin & Tim Papakyriakou & Lisa Miller & Brent Else & John Iacozza & C. Mundy & M. Gosslin & Natalie Asselin & Steve Ferguson & Jennifer Lukovich & Gary Stern & Ashley Gaden & , 2012. "Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007–2008 Canadian International Polar Year program," Climatic Change, Springer, vol. 115(1), pages 135-159, November.
    2. Bindu Panikkar & Benjamin Lemmond, 2020. "Being on Land and Sea in Troubled Times: Climate Change and Food Sovereignty in Nunavut," Land, MDPI, vol. 9(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Maxim Ogurtsov & Markus Lindholm, 2006. "Uncertainties in Assessing Global Warming during the 20th Century: Disagreement between Key Data Sources," Energy & Environment, , vol. 17(5), pages 685-706, September.
    3. Eddy Bekkers & Joseph F. Francois & Hugo Rojas†Romagosa, 2018. "Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route," Economic Journal, Royal Economic Society, vol. 128(610), pages 1095-1127, May.
    4. Eddy Bekkers & Joseph F. Francois & Hugo Rojas†Romagosa, 2018. "Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route," Economic Journal, Royal Economic Society, vol. 128(610), pages 1095-1127, May.
    5. Jennifer A. Francis & Stephen J. Vavrus & Judah Cohen, 2017. "Amplified Arctic warming and mid‐latitude weather: new perspectives on emerging connections," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    6. Nathan S. Debortoli & Tristan D. Pearce & James D. Ford, 2023. "Estimating Future Costs for Infrastructure in the Proposed Canadian Northern Corridor at Risk From Climate Change," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 16(6), March.
    7. Francois, Joseph & Leister, Amanda M. & Rojas-Romagosa, Hugo, 2015. "Melting Ice Caps: Implications for Asia-North America Linkages and the Panama Canal," Conference papers 332671, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. T. Kulkarni & J. Watkins & S. Nickels & D. Lemmen, 2012. "Canadian International Polar Year (2007–2008): an introduction," Climatic Change, Springer, vol. 115(1), pages 1-11, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:1:p:115-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.