IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v267y2018i1d10.1007_s10479-016-2346-6.html
   My bibliography  Save this article

Multiobjective portfolio optimization: bridging mathematical theory with asset management practice

Author

Listed:
  • Panos Xidonas

    (ESSCA Grande École)

  • Christis Hassapis

    (University of Cyprus)

  • George Mavrotas

    (National Technical University of Athens)

  • Christos Staikouras

    (Athens University of Economics and Business)

  • Constantin Zopounidis

    (Audencia Business School)

Abstract

We attempt to establish an integrated portfolio optimization business framework, in order to bridge the underlying gap between the complex mathematical theory of multiobjective mathematical programming and asset management practice. Our aim is to assist practitioners and portfolio managers in formulating successful investment strategies, by providing them with an effective decision support tool. In particular, we propose a multiobjective portfolio model, able to support the simultaneous optimization of multiple investment objectives. We also manage to integrate a set of sophisticated real-world non-convex investment policy limitations, such as the cardinality constraints, the buy-in thresholds, the transaction costs, along with particular normative rules. The underlying investment management rationale of the proposed managerial protocol is displayed through an illustrative business flowchart, while we also provide an analytical step-by-step portfolio management business routine. The validity of the model is verified through an extended empirical testing application on the Eurostoxx 50. According to the results, a sufficient number of efficient or Pareto optimal portfolios produced by the model, appear to possess superior out-of-sample returns with respect to the underlying benchmark.

Suggested Citation

  • Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
  • Handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-016-2346-6
    DOI: 10.1007/s10479-016-2346-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2346-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2346-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xidonas, Panagiotis & Mavrotas, George & Zopounidis, Constantin & Psarras, John, 2011. "IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection," European Journal of Operational Research, Elsevier, vol. 210(2), pages 398-409, April.
    2. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    3. Shangmei Zhao & Qing Lu & Liyan Han & Yong Liu & Fei Hu, 2015. "A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution," Annals of Operations Research, Springer, vol. 226(1), pages 727-739, March.
    4. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    5. Sharpe, William F., 1971. "A Linear Programming Approximation for the General Portfolio Analysis Problem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1263-1275, December.
    6. Włodzimierz Ogryczak, 2000. "Multiple criteria linear programming model for portfolio selection," Annals of Operations Research, Springer, vol. 97(1), pages 143-162, December.
    7. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    8. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    9. Markowitz, Harry M & Perold, Andre F, 1981. "Portfolio Analysis with Factors and Scenarios," Journal of Finance, American Finance Association, vol. 36(4), pages 871-877, September.
    10. Panos Xidonas & George Mavrotas, 2014. "Multiobjective portfolio optimization with non-convex policy constraints: Evidence from the Eurostoxx 50," The European Journal of Finance, Taylor & Francis Journals, vol. 20(11), pages 957-977, November.
    11. Ralph Steuer & Yue Qi & Markus Hirschberger, 2007. "Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection," Annals of Operations Research, Springer, vol. 152(1), pages 297-317, July.
    12. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    13. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints," Journal of Asset Management, Palgrave Macmillan, vol. 8(4), pages 249-258, November.
    14. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    15. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    16. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    17. Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
    18. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    19. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    20. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues," Journal of Asset Management, Palgrave Macmillan, vol. 8(3), pages 200-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carla Oliveira Henriques & Maria Elisabete Neves & Licínio Castelão & Duc Khuong Nguyen, 2022. "Assessing the performance of exchange traded funds in the energy sector: a hybrid DEA multiobjective linear programming approach," Annals of Operations Research, Springer, vol. 313(1), pages 341-366, June.
    2. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    3. Forouli, Aikaterini & Doukas, Haris & Nikas, Alexandros & Sampedro, Jon & Van de Ven, Dirk-Jan, 2019. "Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach," Utilities Policy, Elsevier, vol. 57(C), pages 33-42.
    4. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Panos Xidonas & George Mavrotas, 2014. "Comparative issues between linear and non-linear risk measures for non-convex portfolio optimization: evidence from the S&P 500," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1229-1242, July.
    3. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    4. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    5. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    6. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    7. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    8. Constantin Zopounidis & Michael Doumpos, 2013. "Multicriteria decision systems for financial problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 241-261, July.
    9. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    10. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2018. "Index tracking model, downside risk and non-parametric kernel estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 103-128.
    11. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.
    12. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    13. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    14. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    15. Tamiz, Mehrdad & Azmi, Rania A. & Jones, Dylan F., 2013. "On selecting portfolio of international mutual funds using goal programming with extended factors," European Journal of Operational Research, Elsevier, vol. 226(3), pages 560-576.
    16. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    17. Zhihui Lv & Amanda M. Y. Chu & Wing Keung Wong & Thomas C. Chiang, 2021. "The maximum-return-and-minimum-volatility effect: evidence from choosing risky and riskless assets to form a portfolio," Risk Management, Palgrave Macmillan, vol. 23(1), pages 97-122, June.
    18. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    19. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.
    20. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-016-2346-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.