IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v211y2013i1p37-4810.1007-s10479-013-1438-9.html
   My bibliography  Save this article

Do efficiency scores depend on input mix? A statistical test and empirical illustration

Author

Listed:
  • Mette Asmild
  • Jens Hougaard
  • Dorte Kronborg

Abstract

In this paper we examine the possibility of using the standard Kruskal-Wallis (KW) rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix of the observations. Since the DEA frontier is estimated, many standard assumptions for evaluating the KW test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, unlike existing approaches in the literature, is also applicable when comparing distributions of efficiency scores in more than two groups and does not rely on bootstrapping of, or questionable distributional assumptions about, the efficiency scores. The approach is illustrated using an empirical case of demolition projects. Since the assumption of mix independence is rejected the implication is that it, for example, is impossible to determine whether machine intensive project are more or less efficient than labor intensive projects. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Mette Asmild & Jens Hougaard & Dorte Kronborg, 2013. "Do efficiency scores depend on input mix? A statistical test and empirical illustration," Annals of Operations Research, Springer, vol. 211(1), pages 37-48, December.
  • Handle: RePEc:spr:annopr:v:211:y:2013:i:1:p:37-48:10.1007/s10479-013-1438-9
    DOI: 10.1007/s10479-013-1438-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1438-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1438-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    4. Cooper, W. W. & Tone, K., 1997. "Measures of inefficiency in data envelopment analysis and stochastic frontier estimation," European Journal of Operational Research, Elsevier, vol. 99(1), pages 72-88, May.
    5. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    6. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    7. Jie Wu & Liang Liang, 2012. "A multiple criteria ranking method based on game cross-evaluation approach," Annals of Operations Research, Springer, vol. 197(1), pages 191-200, August.
    8. Marie-Laure Bougnol & José Dulá, 2006. "Validating DEA as a ranking tool: An application of DEA to assess performance in higher education," Annals of Operations Research, Springer, vol. 145(1), pages 339-365, July.
    9. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    10. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    11. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, December.
    12. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min, Hokey & Joo, Seong-Jong, 2016. "A comparative performance analysis of airline strategic alliances using data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 99-110.
    2. Natascha Eggers & Torsten Birth & Bernd Sankol & Lukas Kerpen & Antonio Hurtado, 2023. "A Literature Review on Existing Methods and Indicators for Evaluating the Efficiency of Power-to-X Processes," Clean Technol., MDPI, vol. 5(1), pages 1-23, January.
    3. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    4. Heesche, Emil & Asmild, Mette, 2022. "Controlling for environmental conditions in regulatory benchmarking," Utilities Policy, Elsevier, vol. 77(C).
    5. Sueyoshi, Toshiyuki & Ryu, Youngbok, 2022. "Performance assessment on technology transition from small businesses to the U.S. Department of Defense," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Mehdi Toloo & Madjid Tavana, 2017. "A novel method for selecting a single efficient unit in data envelopment analysis without explicit inputs/outputs," Annals of Operations Research, Springer, vol. 253(1), pages 657-681, June.
    7. Emil Heesche & Mette Asmild, 2020. "Controlling for environmental conditions in regulatory benchmarking," IFRO Working Paper 2020/03, University of Copenhagen, Department of Food and Resource Economics.
    8. Mehdi Toloo & Mona Barat & Atefeh Masoumzadeh, 2015. "Selective measures in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 623-642, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mette Asmild & Jens Leth Hougaard & Dorte Kronborg, 2011. "Does the distribution of efficiency scores depend on the input mix?," MSAP Working Paper Series 03_2011, University of Copenhagen, Department of Food and Resource Economics.
    2. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    3. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    4. Essid, Hédi & Ouellette, Pierre & Vigeant, Stéphane, 2010. "Measuring efficiency of Tunisian schools in the presence of quasi-fixed inputs: A bootstrap data envelopment analysis approach," Economics of Education Review, Elsevier, vol. 29(4), pages 589-596, August.
    5. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    6. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    7. Neumann, Anne & Nieswand, Maria & Schubert, Torben, 2016. "Estimating Alternative Technology Sets in Nonparametric Efficiency Analysis: Restriction Tests for Panel and Clustered Data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 45(1), pages 35-51.
    8. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    9. Richmond, J, 2001. "Slack and Net Technical Efficiency Measurement: A Bootstrap Approach," Economics Discussion Papers 8837, University of Essex, Department of Economics.
    10. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    11. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    12. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    13. Simar, Leopold & Wilson, Paul W., 2002. "Non-parametric tests of returns to scale," European Journal of Operational Research, Elsevier, vol. 139(1), pages 115-132, May.
    14. Alexander Schiersch, 2013. "Firm size and efficiency in the German mechanical engineering industry," Small Business Economics, Springer, vol. 40(2), pages 335-350, February.
    15. Kelly D.T.Trinh & Valentin Zelenyuk, 2015. "Bootstrap-based testing for network DEA: Some Theory and Applications," CEPA Working Papers Series WP052015, School of Economics, University of Queensland, Australia.
    16. Massimo Finocchiaro Castro & Calogero Guccio, 2014. "Searching for the source of technical inefficiency in Italian judicial districts: an empirical investigation," European Journal of Law and Economics, Springer, vol. 38(3), pages 369-391, December.
    17. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    18. Michali, Maria & Emrouznejad, Ali & Dehnokhalaji, Akram & Clegg, Ben, 2023. "Subsampling bootstrap in network DEA," European Journal of Operational Research, Elsevier, vol. 305(2), pages 766-780.
    19. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    20. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:211:y:2013:i:1:p:37-48:10.1007/s10479-013-1438-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.