IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v10y2016i2d10.1007_s11634-016-0232-3.html
   My bibliography  Save this article

Item selection by latent class-based methods: an application to nursing home evaluation

Author

Listed:
  • Francesco Bartolucci

    (University of Perugia)

  • Giorgio E. Montanari

    (University of Perugia)

  • Silvia Pandolfi

    (University of Perugia)

Abstract

The evaluation of nursing homes is usually based on the administration of questionnaires made of a large number of polytomous items to their patients. In such a context, the latent class model represents a useful tool for clustering subjects in homogenous groups corresponding to different degrees of impairment of the health conditions. It is known that the performance of model-based clustering and the accuracy of the choice of the number of latent classes may be affected by the presence of irrelevant or noise variables. In this paper, we show the application of an item selection algorithm to a dataset collected within a project, named ULISSE, on the quality-of-life of elderly patients hosted in Italian nursing homes. This algorithm, which is closely related to that proposed by Dean and Raftery in 2010, is aimed at finding the subset of items which provides the best clustering according to the Bayesian Information Criterion. At the same time, it allows us to select the optimal number of latent classes. Given the complexity of the ULISSE study, we perform a validation of the results by means of a sensitivity analysis, with respect to different specifications of the initial subset of items, and of a resampling procedure.

Suggested Citation

  • Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.
  • Handle: RePEc:spr:advdac:v:10:y:2016:i:2:d:10.1007_s11634-016-0232-3
    DOI: 10.1007/s11634-016-0232-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0232-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0232-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galasso, Vincenzo & Profeta, Paola, 2007. "How does ageing affect the welfare state?," European Journal of Political Economy, Elsevier, vol. 23(2), pages 554-563, June.
    2. Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 11-35, February.
    3. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    4. Friedrich Breyer & Joan Costa-Font & Stefan Felder, 2010. "Ageing, health, and health care," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(4), pages 674-690, Winter.
    5. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    6. Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.
    2. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
    3. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    4. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    5. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    6. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    7. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    8. repec:jss:jstsof:28:i04 is not listed on IDEAS
    9. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    10. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    11. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    12. Kerekes, Monika, 2012. "Growth miracles and failures in a Markov switching classification model of growth," Journal of Development Economics, Elsevier, vol. 98(2), pages 167-177.
    13. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    14. Masahiro Kuroda & Zhi Geng & Michio Sakakihara, 2015. "Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure," Computational Statistics, Springer, vol. 30(4), pages 1051-1077, December.
    15. Kerekes, Monika, 2009. "Growth miracles and failures in a Markov switching classification model of growth," Discussion Papers 2009/11, Free University Berlin, School of Business & Economics.
    16. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    17. Mai, Feng & Fry, Michael J. & Ohlmann, Jeffrey W., 2018. "Model-based capacitated clustering with posterior regularization," European Journal of Operational Research, Elsevier, vol. 271(2), pages 594-605.
    18. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    19. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    20. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    21. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:10:y:2016:i:2:d:10.1007_s11634-016-0232-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.