IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v37y2012i4p518-542.html
   My bibliography  Save this article

Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures

Author

Listed:
  • Minjeong Jeon

    (University of California, Berkeley)

  • Sophia Rabe-Hesketh

    (University of California, Berkeley and Institute of Education, University of London)

Abstract

In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be estimated this way is generalized linear mixed models with factor structures. Such models are useful in educational research, for example, for estimation of value-added teacher or school effects with persistence parameters and for analysis of large-scale assessment data using multilevel item response models with discrimination parameters. The authors describe the profile-likelihood approach, implement it in the R software, and apply the method to longitudinal data and binary item response data. Simulation studies and comparison with gllamm show that the profile-likelihood method performs well in both types of applications. The authors also briefly discuss other types of models that can be estimated using the profile-likelihood idea.

Suggested Citation

  • Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
  • Handle: RePEc:sae:jedbes:v:37:y:2012:i:4:p:518-542
    DOI: 10.3102/1076998611417628
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998611417628
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998611417628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    2. De Boeck, Paul & Bakker, Marjan & Zwitser, Robert & Nivard, Michel & Hofman, Abe & Tuerlinckx, Francis & Partchev, Ivailo, 2011. "The Estimation of Item Response Models with the lmer Function from the lme4 Package in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i12).
    3. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    4. Louis T. Mariano & Daniel F. McCaffrey & J. R. Lockwood, 2010. "A Model for Teacher Effects From Longitudinal Data Without Assuming Vertical Scaling," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 253-279, June.
    5. Susan Embretson, 1999. "Generating items during testing: Psychometric issues and models," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 407-433, December.
    6. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    7. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    8. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.
    9. Cora Maas & Tom Snijders, 2003. "The Multilevel Approach to Repeated Measures for Complete and Incomplete Data," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(1), pages 71-89, February.
    10. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    11. Harvey Goldstein & Simon Burgess & Brendon McConnell, 2007. "Modelling the effect of pupil mobility on school differences in educational achievement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 941-954, October.
    12. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    13. Doran, Harold & Bates, Douglas & Bliese, Paul & Dowling, Maritza, 2007. "Estimating the Multilevel Rasch Model: With the lme4 Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i02).
    14. Deping Li & Andreas Oranje & Yanlin Jiang, 2009. "On the Estimation of Hierarchical Latent Regression Models for Large-Scale Assessments," Journal of Educational and Behavioral Statistics, , vol. 34(4), pages 433-463, December.
    15. Fox, Jean-Paul, 2007. "Multilevel IRT Modeling in Practice with the Package mlirt," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i05).
    16. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    2. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.
    3. Sun-Joo Cho & Jennifer Gilbert & Amanda Goodwin, 2013. "Explanatory Multidimensional Multilevel Random Item Response Model: An Application to Simultaneous Investigation of Word and Person Contributions to Multidimensional Lexical Representations," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 830-855, October.
    4. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    2. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    3. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    4. Sophia Rabe-Hesketh & Anders Skrondal, 2007. "Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 123-140, June.
    5. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    6. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    7. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    8. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    9. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    10. Sophia Rabe‐Hesketh & Anders Skrondal, 2006. "Multilevel modelling of complex survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 805-827, October.
    11. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    12. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    13. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    14. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    15. Anders Skrondal & Jouni Kuha, 2012. "Improved Regression Calibration," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 649-669, October.
    16. Sun-Joo Cho & Jennifer Gilbert & Amanda Goodwin, 2013. "Explanatory Multidimensional Multilevel Random Item Response Model: An Application to Simultaneous Investigation of Word and Person Contributions to Multidimensional Lexical Representations," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 830-855, October.
    17. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    18. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.
    19. Nicholas J. Rockwood, 2021. "Efficient Likelihood Estimation of Generalized Structural Equation Models with a Mix of Normal and Nonnormal Responses," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 642-667, June.
    20. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:37:y:2012:i:4:p:518-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.