IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0026.html
   My bibliography  Save this article

Interest Rate Risk Management Based on Copula-GARCH Models

Author

Listed:
  • Penikas, Henry

    (Higher School of Economics, Russia)

  • Simakova, Varvara

    (Higher School of Economics, Russia)

Abstract

The paper is aimed at making comparative analysis of main market risk features based on the copula-modeling and on the traditional approach which neglects the asymmetry and the fat tails of interest rates joint multivariate distribution. R software is used for practical implementation of the introduced methodology when dealing with copulas.Copula application makes it possible to reveal that the interest rates joint multivariate distribution is asymmetric, i.e. interest rates tend more frequently to rise simultaneously, than to decline. It is also shown that copulas help diminish the expected value of equity-at-risk breaches by 7–13% depending on the chosen confidence level

Suggested Citation

  • Penikas, Henry & Simakova, Varvara, 2009. "Interest Rate Risk Management Based on Copula-GARCH Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 13(1), pages 3-36.
  • Handle: RePEc:ris:apltrx:0026
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2009_1_3-36.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chollete, Lorán & Heinen, Andreas, 2006. "Frequent Turbulence? A Dynamic Copula Approach," Discussion Papers 2006/10, Norwegian School of Economics, Department of Business and Management Science.
    2. Fantazzini , Dean, 2009. "Econometric Analysis of Financial Data in Risk Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 14(2), pages 100-127.
    3. Bruno Solnik & François Longin, 1998. "Correlation Structure of International Equity Markets During Extremely Volatile Periods," Working Papers hal-00599996, HAL.
    4. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    5. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    6. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    7. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    8. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
    11. De Pooter, Michiel & Ravazzolo, Francesco & van Dijk, Dick, 2006. "Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information," MPRA Paper 2512, University Library of Munich, Germany, revised 03 Mar 2007.
    12. Penikas, Henry, 2008. "Forecasting for the Bank's Asset-Liability Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 12(4), pages 3-26.
    13. Bruno Solnik & François Longin, 1998. "Dependence Structure of International Equity Markets During Extremely Volatile Periods," Working Papers hal-00599994, HAL.
    14. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    15. François, LONGIN & Bruno, SOLNIK, 1998. "Correlation Structure of International Equity Markets During Extremely Volatile Periods," HEC Research Papers Series 646, HEC Paris.
    16. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    17. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Bedin & Alexander Kulikov & Andrey Polbin, 2023. "Copula-Based Modelling of Relationship Between Dollar/Rouble Exchange Rate and Oil Prices," Russian Journal of Money and Finance, Bank of Russia, vol. 82(3), pages 87-109, September.
    2. Penikas, Henry, 2014. "Investment portfolio risk modelling based on hierarchical copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 18-38.
    3. Петрова Екатерина Александровна, 2014. "Оценка Риска Остаточной Стоимости Секьюритизированного Пула Активов Оперативного Лизинга," Вестник Финансового университета, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 3, pages 127-138.
    4. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    5. Aivazian, Sergei & Afanasiev, Mikhail & Rudenko, Victoria, 2014. "Analysis of dependence between the random components of a stochastic production function for the purpose of technical efficiency estimation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 34(2), pages 3-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    2. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    3. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    4. Coroneo, Laura & Nyholm, Ken & Vidova-Koleva, Rositsa, 2011. "How arbitrage-free is the Nelson-Siegel model?," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 393-407, June.
    5. Penikas, Henry, 2008. "Forecasting for the Bank's Asset-Liability Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 12(4), pages 3-26.
    6. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    7. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    8. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    9. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    10. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    11. Andrea Carriero, 2011. "Forecasting The Yield Curve Using Priors From No‐Arbitrage Affine Term Structure Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 425-459, May.
    12. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    13. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    14. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    15. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    16. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    17. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    18. Tao Zou & Song Xi Chen, 2017. "Enhancing Estimation for Interest Rate Diffusion Models With Bond Prices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 486-498, July.
    19. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    20. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.

    More about this item

    Keywords

    copula; EVEaR; interest rate risk; Russia; MosPrime; OFZ; yield curve;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.