Advanced Search
MyIDEAS: Login to save this article or follow this journal

Capturing multiscalar feedbacks in urban land change: a coupled system dynamics spatial logistic approach

Contents:

Author Info

  • Burak Güneralp
  • Michael K Reilly
  • Karen C Seto
Registered author(s):

    Abstract

    In this paper we ask two questions: Does a multiscalar urban land-change model that couples a region-scale system dynamics model with a local-scale spatial logit model�better predict the amount of urban land change than either model alone? Does a multiscalar urban land-change model that couples regional and local-scale factors better predict the spatial patterns of urban land change than a standalone local-scale spatial logit model? To examine these questions, we develop a coupled system dynamics spatial logit (CSDSL) model for the Pearl River Delta, China, that incorporates region-scale population and economic factors with local-scale biophysical and accessibility factors. In terms of predicting the amounts of urban land change, the CSDSL model is 15% and 18% more accurate than the standalone spatial logit and system dynamics models, respectively. In terms of predicting the spatial pattern of urban land change, the CSDSL model slightly outperforms the spatial logit model as measured by four spatial pattern metrics: number of urban patches, urban edge density, average urban patch size, and spatial irregularity of the urban area. Both the CSDSL and spatial logit models underpredict the number of discrete urban patches (by 64% and 80%, respectively) and the urban edge density (by 42% and 62%, respectively). While both models overpredict the average urban patch size, the spatial logit model overpredicts by over 316%, while the CSDSL overpredicts by 192%. Finally, the models perform equally well in predicting the spatial irregularity of urban areas and the location of urban change. Taken together, these results demonstrate that the CSDSL model outperforms a standalone spatial logit or system dynamics model in predicting the amount and spatial complexity of urban land change. The results also show that predicting urban land-change patterns remains more difficult than predicting total amounts of change. Keywords: Urban modeling, urban growth forecasting, urbanization, urban expansion, land use change, China, spatially explicit model, multiscale modeling

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.envplan.com/abstract.cgi?id=b36151
    File Function: abstract
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/B.html for details

    File URL: http://www.envplan.com/epb/fulltext/b39/b36151.pdf
    File Function: main text
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/B.html for details

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Pion Ltd, London in its journal Environment and Planning B: Planning and Design.

    Volume (Year): 39 (2012)
    Issue (Month): 5 (September)
    Pages: 858-879

    as in new window
    Handle: RePEc:pio:envirb:v:39:y:2012:i:5:p:858-879

    Contact details of provider:
    Web page: http://www.pion.co.uk

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pio:envirb:v:39:y:2012:i:5:p:858-879. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Neil Hammond).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.