Advanced Search
MyIDEAS: Login

An adjacency constraint in agglomerative hierarchical classifications of geographic data

Contents:

Author Info

  • C R Margules
  • D P Faith
  • L Belbin
Registered author(s):

    Abstract

    A numerical method for classifying geographic data is presented which incorporates geographic location as an external constraint. The method was implemented by making minimal changes to an existing agglomerative hierarchical algorithm. This was seen as the simplest solution, both computationally and operationally. Given a matrix of similarities or distances calculated from the usual intrinsic variables, the classification proceeds normally with the constraint that only adjacent objects are allowed to form groups. The method has been implemented previously, but here the examination of it is extended to cover the effects of a range of different fusion strategies, and to consider chances in within-group heterogeneity as a result of imposing an adjacency constraint. Three other matters arising are discussed: the presence of regional as opposed to global outliers of a classification; the occurrence of reversals in similarity values; and a measure of the stress imposed on a classification with an adjacency constraint. The method is seen as suggesting a possible general solution to the problem of constraints in numerical classification. Some examples of other constraints and the appropriate fusion strategies are given.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.envplan.com/abstract.cgi?id=a170397
    File Function: abstract
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/A.html for details

    File URL: http://www.envplan.com/epa/fulltext/a17/a170397.pdf
    File Function: main text
    Download Restriction: Fulltext access restricted to subscribers, see http://www.envplan.co.uk/A.html for details

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Pion Ltd, London in its journal Environment and Planning A.

    Volume (Year): 17 (1985)
    Issue (Month): 3 (March)
    Pages: 397-412

    as in new window
    Handle: RePEc:pio:envira:v:17:y:1985:i:3:p:397-412

    Contact details of provider:
    Web page: http://www.pion.co.uk

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Gordon, A. D., 1996. "A survey of constrained classification," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 17-29, January.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pio:envira:v:17:y:1985:i:3:p:397-412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Neil Hammond).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.