IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i1p245-251.html
   My bibliography  Save this article

Optimality of group testing in the presence of misclassification

Author

Listed:
  • Aiyi Liu
  • Chunling Liu
  • Zhiwei Zhang
  • Paul S. Albert

Abstract

Several optimality properties of Dorfman's (1943) group testing procedure are derived for estimation of the prevalence of a rare disease whose status is classified with error. Exact ranges of disease prevalence are obtained for which group testing provides more efficient estimation when group size increases. Copyright 2012, Oxford University Press.

Suggested Citation

  • Aiyi Liu & Chunling Liu & Zhiwei Zhang & Paul S. Albert, 2012. "Optimality of group testing in the presence of misclassification," Biometrika, Biometrika Trust, vol. 99(1), pages 245-251.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:245-251
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr064
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Wenjun & Ding, Juan, 2015. "Robust procedures for experimental design in group testing considering misclassification," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 35-41.
    2. Gregory Haber & Yaakov Malinovsky, 2020. "On the Construction of Unbiased Estimators for the Group Testing Problem," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 220-241, February.
    3. Lipnowski, Elliot & Ravid, Doron, 2021. "Pooled testing for quarantine decisions," Journal of Economic Theory, Elsevier, vol. 198(C).
    4. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    5. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    6. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    7. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    8. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    9. Shih-Hao Huang & Mong-Na Lo Huang & Kerby Shedden & Weng Kee Wong, 2017. "Optimal group testing designs for estimating prevalence with uncertain testing errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1547-1563, November.
    10. Tarun Jain & Bijendra Nath Jain, 2021. "Infection Testing at Scale: An Examination of Pooled Testing Diagnostics," Vikalpa: The Journal for Decision Makers, , vol. 46(1), pages 13-26, March.
    11. Graham Hepworth & Brad J. Biggerstaff, 2021. "Bias Correction in Estimating Proportions by Imperfect Pooled Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 90-104, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:245-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.