IDEAS home Printed from https://ideas.repec.org/a/oup/apecpp/v38y2016i4p599-617..html
   My bibliography  Save this article

What Is the Social Value of Second Generation Biofuels?

Author

Listed:
  • Thomas W. Hertel
  • Jevgenijs Steinbuks
  • Wallace E. Tyner

Abstract

What are second-generation (2G) biofuel technologies worth to global society? A dynamic, economic model is used to assess the impact that introducing 2G biofuels technology has on crops, livestock, biofuels, forestry, and environmental services, as well as greenhouse gas emissions. Under baseline conditions, this amounts to $64 billion and is $84 billion under the optimistic technology case, suggesting that investing in 2G technology could be appropriate. Under greenhouse gas regulation, global valuation more than doubles to $139 and $174 billion, respectively. A flat energy price scenario eliminates the value of 2G technology to society.

Suggested Citation

  • Thomas W. Hertel & Jevgenijs Steinbuks & Wallace E. Tyner, 2016. "What Is the Social Value of Second Generation Biofuels?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 38(4), pages 599-617.
  • Handle: RePEc:oup:apecpp:v:38:y:2016:i:4:p:599-617.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/aepp/ppv027
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    2. Cranfield, J. A. L. & Preckel, Paul V. & Eales, James S. & Hertel, Thomas W., 2002. "Estimating consumer demands across the development spectrum: maximum likelihood estimates of an implicit direct additivity model," Journal of Development Economics, Elsevier, vol. 68(2), pages 289-307, August.
    3. Antoine Blandine & Gurgel Angelo & Reilly John M, 2008. "Will Recreation Demand for Land Limit Biofuels Production?," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 6(2), pages 1-29, December.
    4. Jevgenijs Steinbuks & Thomas Hertel, 2016. "Confronting the Food–Energy–Environment Trilemma: Global Land Use in the Long Run," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(3), pages 545-570, March.
    5. Sergey Paltsev, 2012. "Implications of Alternative Mitigation Policies on World Prices for Fossil Fuels and Agricultural Products," WIDER Working Paper Series wp-2012-065, World Institute for Development Economic Research (UNU-WIDER).
    6. Steinbuks, Jevgenijs & Thomas Hertel, 2012. "Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE)," GTAP Working Papers 3988, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    7. Paltsev, Sergey, 2012. "Implications of Alternative Mitigation Policies on World Prices for Fossil Fuels and Agricultural Products," WIDER Working Paper Series 065, World Institute for Development Economic Research (UNU-WIDER).
    8. Jeffrey Reimer & Thomas Hertel, 2004. "Estimation of International Demand Behaviour for Use with Input-Output Based Data," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 347-366.
    9. repec:unu:wpaper:wp2012-65 is not listed on IDEAS
    10. Steinbuks, Jevgenijs & Thomas Hertel, 2012. "Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE)," GTAP Working Papers 3988, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai,Yongyang & Steinbuks,Jevgenijs & Judd,Kenneth L. & Jaegermeyr,Jonas & Hertel,Thomas W., 2020. "Modeling Uncertainty in Large Natural Resource Allocation Problems," Policy Research Working Paper Series 9159, The World Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    2. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    3. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    4. Cai, Yongyang & Golub, Alla A. & Hertel, Thomas W., 2016. "Developing Long-run Agricultural R&D Policy in the Face of Uncertain Economic Growth," 2017 Allied Social Sciences Association (ASSA) Annual Meeting, January 6-8, 2017, Chicago, Illinois 250111, Agricultural and Applied Economics Association.
    5. Lourenço Manuel & Orcídia Chiziane & Gaby Mandhlate & Faaiqa Hartley & Emílio Tostão, 2021. "Impact of climate change on the agriculture sector and household welfare in Mozambique: an analysis based on a dynamic computable general equilibrium model," Climatic Change, Springer, vol. 167(1), pages 1-18, July.
    6. Peterson, Sonja & Weitzel, Matthias, 2014. "Reaching a climate agreement: Do we have to compensate for energy market effects of climate policy?," Kiel Working Papers 1965, Kiel Institute for the World Economy (IfW Kiel).
    7. Makarov, Igor & Chen, Y.-H. Henry & Paltsev, Sergey, 2018. "Finding itself in the post-Paris world: Russia in the new global energy landscape," Conference papers 332984, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Ramberg, David J. & Henry Chen, Y.H. & Paltsev, Sergey & Parsons, John E., 2017. "The economic viability of gas-to-liquids technology and the crude oil–natural gas price relationship," Energy Economics, Elsevier, vol. 63(C), pages 13-21.
    9. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    10. Channing Arndt & Paul Chinowsky & Charles Fant & Sergey Paltsev & C. Adam Schlosser & Kenneth Strzepek & Finn Tarp & James Thurlow, 2019. "Climate change and developing country growth: the cases of Malawi, Mozambique, and Zambia," Climatic Change, Springer, vol. 154(3), pages 335-349, June.
    11. Sergey Paltsev, 2016. "Energy Scenarios: The Value and Limits of Scenario Analysis," EcoMod2016 9371, EcoMod.
    12. Sergey Paltsev & Pantelis Capros, 2013. "Cost Concepts For Climate Change Mitigation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    13. Ada Ignaciuk & Daniel Mason-D'Croz, 2014. "Modelling Adaptation to Climate Change in Agriculture," OECD Food, Agriculture and Fisheries Papers 70, OECD Publishing.
    14. Gurgel, Angelo & Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John, 2016. "Linking Natural Resources to the CGE framework: the case of Land Use Changes in the EPPA Model," Conference papers 332705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    16. Russell Hillberry & David Hummels, 2021. "Tom Hertel’s Influence and Its Lessons about Academic Inquiry," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 2, pages 9-39, World Scientific Publishing Co. Pte. Ltd..
    17. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    18. John Reilly & Sergey Paltsev & Ken Strzepek & Noelle Selin & Yongxia Cai & Kyung-Min Nam & Erwan Monier & Stephanie Dutkiewicz & Jeffery Scott & Mort Webster & Andrei Sokolov, 2013. "Valuing climate impacts in integrated assessment models: the MIT IGSM," Climatic Change, Springer, vol. 117(3), pages 561-573, April.
    19. Cairns, Alexander P. & Meilke, Karl D., 2012. "Canadian Agrifood Export Performance and the Growth Potential of the BRICs and Next-11," Trade Policy Briefs 145973, Canadian Agricultural Trade Policy Research Network.
    20. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.

    More about this item

    Keywords

    Global land use; biofuels; climate policy; climate impacts; energy prices;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:apecpp:v:38:y:2016:i:4:p:599-617.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.