Advanced Search
MyIDEAS: Login to save this article or follow this journal

Análisis de la Función de Producción Agraria para distintos niveles de Agregación

Contents:

Author Info

  • CEPAS LÓPEZ, S.

    (Departamento de Estadística)

  • DIOS PALOMARES, R.

    (Departamento de Estadística)

Abstract

El principal objetivo de este estudio es estimar la función de producción para el sector agrario español (FPA). También se pretende comprobar si el planteamiento de diferentes niveles de agregación de los datos afecta a las repercusiones de la multicolinealidad, realizar un análisis descriptivo de las variables que van a entrar en los modelos, y evaluar la incidencia de la multicolinealidad sobre la FPA. Se utilizan cuatro niveles de agregación de las variables explicativas, y se estiman las correspondientes funciones de producción por MCO tras introducir dichas variables linealizadas en una especificación Cobb-Douglas. Igualmente, se detecta la intensidad de la multicolinealidad mediante el cálculo de los índices de condición y de la descomposición de la varianza. Los resultados obtenidos indican que la estimación de la FPA se ve afectada negativamente por la multicolinealidad, y que el uso de agregaciones no consigue mejorar esa situación. Sin embargo, los modelos presentaron excelentes propiedades desde el punto de vista predictivo. The main aim of this research is to estimate the aggregate production function (APF) for Spain's agricultural sector . Other objectives are to carry out a descriptive analysis of the production inputs, to assess the effects of multicollinearity on the APF, and to find out whether such effects are affected when using several aggregative levels of the inputs. Specifically, four aggregative levels are used, and the four outcoming models are estimated by Ordinary Least Squares, employing a Cobb-Douglas specification. Equally, multicollinearity's severity is detected using variance decomposition and condition indexes. It is concluded that multicollinearity seems to affect negatively the APF estimation, with no improvement provided by the aggregation. However, the models estimated showed favourable properties in terms of predictive capacity.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.revista-eea.net
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Estudios de Economía Aplicada in its journal Estudios de Economía Aplicada.

Volume (Year): 12 (1999)
Issue (Month): (Julio)
Pages: 17-33

as in new window
Handle: RePEc:lrk:eeaart:12_2_7

Contact details of provider:
Postal: Beatriz Rodríguez Prado. Facultad de CC.EE. y EE. Avda. Valle del Esgueva. Valladolid 47011 SPAIN
Phone: (34) 983 423320
Fax: (34) 983 184568
Web page: http://www.revista-eea.net
More information through EDIRC

Order Information:
Email:
Web: http://www.revista-eea.net

Related research

Keywords: multicollinearity; aggregated production function; variance; decomposition.;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Andrés González-Moralejo, Silvia & Soldado Llorens, Mº José, 2012. "Contribución de las variables que estimulan la producción agraria en España (1990-2009)/Analyse of the Main Variables Which Better Contribute to the Agricultural Production in Spain (1990-2009)," Estudios de Economía Aplicada, Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 30, pages 367 (24 pag, Abril.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:12_2_7. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.