IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v31y2009i3p137-150.html
   My bibliography  Save this article

Exact decomposition of the Fisher ideal total factor productivity index

Author

Listed:
  • Timo Kuosmanen
  • Timo Sipiläinen

Abstract

No abstract is available for this item.

Suggested Citation

  • Timo Kuosmanen & Timo Sipiläinen, 2009. "Exact decomposition of the Fisher ideal total factor productivity index," Journal of Productivity Analysis, Springer, vol. 31(3), pages 137-150, June.
  • Handle: RePEc:kap:jproda:v:31:y:2009:i:3:p:137-150
    DOI: 10.1007/s11123-008-0129-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-008-0129-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-008-0129-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Färe & D. Primont, 2003. "Luenberger Productivity Indicators: Aggregation Across Firms," Journal of Productivity Analysis, Springer, vol. 20(3), pages 425-435, November.
    2. Timo Kuosmanen & Timo Sipiläinen, 2004. "On the Anatomy of Productivity Growth: A Decomposition of the Fisher Ideal TFP Index," Econometrics 0410010, University Library of Munich, Germany.
    3. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    4. Denis Lawrence & W. Diewert & Kevin Fox, 2006. "The contributions of productivity, price changes and firm size to profitability," Journal of Productivity Analysis, Springer, vol. 26(1), pages 1-13, August.
    5. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    6. Bjurek, Hans, 1996. " The Malmquist Total Factor Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 98(2), pages 303-313, June.
    7. Balk, Bert M., 2004. "Decompositions of Fisher indexes," Economics Letters, Elsevier, vol. 82(1), pages 107-113, January.
    8. W. Diewert & Alice Nakamura, 2003. "Index Number Concepts, Measures and Decompositions of Productivity Growth," Journal of Productivity Analysis, Springer, vol. 19(2), pages 127-159, April.
    9. Jean-Paul Chavas & Thomas L. Cox, 1999. "A Generalized Distance Function and the Analysis of Production Efficiency," Southern Economic Journal, John Wiley & Sons, vol. 66(2), pages 294-318, October.
    10. Balk, Bert M, 1993. "Malmquist Productivity Indexes and Fisher Ideal Indexes: Comment," Economic Journal, Royal Economic Society, vol. 103(418), pages 680-682, May.
    11. John McDonald, 1996. "Note: A Problem with the Decomposition of Technical Inefficiency into Scale and Congestion Components," Management Science, INFORMS, vol. 42(3), pages 473-474, March.
    12. Oulton,Nicholas & O'Mahony,Mary, 1994. "Productivity and Growth," Cambridge Books, Cambridge University Press, number 9780521453455, October.
    13. Ray, Subhash C & Mukherjee, Kankana, 1996. "Decomposition of the Fisher Ideal Index of Productivity: A Non-parametric Dual Analysis of US Airlines Data," Economic Journal, Royal Economic Society, vol. 106(439), pages 1659-1678, November.
    14. Fare, Rolf & Grosskopf, Shawna, 1992. "Malmquist Productivity Indexes and Fisher Ideal Indexes," Economic Journal, Royal Economic Society, vol. 102(410), pages 158-160, January.
    15. Nishimizu, Mieko & Page, John M, Jr, 1982. "Total Factor Productivity Growth, Technological Progress and Technical Efficiency Change: Dimensions of Productivity Change in Yugoslavia, 1965-78," Economic Journal, Royal Economic Society, vol. 92(368), pages 920-936, December.
    16. E. Grifell-Tatjé & C. A. K. Lovell, 1999. "Profits and Productivity," Management Science, INFORMS, vol. 45(9), pages 1177-1193, September.
    17. Timo Kuosmanen & Thierry Post & Timo Sipiläinen, 2004. "Shadow Price Approach to Total Factor Productivity Measurement: With an Application to Finnish Grass-Silage Production," Journal of Productivity Analysis, Springer, vol. 22(1), pages 95-121, July.
    18. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhua Sun & Decai Tang & Haojia Kong & Valentina Boamah, 2022. "Impact of Industrial Structure Upgrading on Green Total Factor Productivity in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    2. Sabasi, Darlington & Shumway, C. Richard, 2014. "Technical Change, Efficiency, and Total Factor Productivity in U.S. Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170225, Agricultural and Applied Economics Association.
    3. Andrew Johnson & John Ruggiero, 2014. "Nonparametric measurement of productivity and efficiency in education," Annals of Operations Research, Springer, vol. 221(1), pages 197-210, October.
    4. Kar, Ashim Kumar & Rahman, Sanzidur, 2018. "Changes in total factor productivity and efficiency of microfinance institutions in the developing world: A non-parametric approach," Economic Analysis and Policy, Elsevier, vol. 60(C), pages 103-118.
    5. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    6. Choudhry, Sonam, 2021. "Is India's formal manufacturing sector ‘hollowing out’- importance of intermediate input," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 533-547.
    7. Agrell, Per J. & Grifell-Tatjé, Emili, 2016. "A dynamic model for firm-response to non-credible incentive regulation regimes," Energy Policy, Elsevier, vol. 90(C), pages 287-299.
    8. C. O’Donnell, 2012. "An aggregate quantity framework for measuring and decomposing productivity change," Journal of Productivity Analysis, Springer, vol. 38(3), pages 255-272, December.
    9. E. Grifell-TatjeÌ & C. A. K. Lovell, 2015. "Decompositions of Profitability Change Using Cost Functions: A Comment," CEPA Working Papers Series WP032015, School of Economics, University of Queensland, Australia.
    10. Merihun Fikru Meja & Bamlaku Alamirew Alemu & Maru Shete, 2021. "Total Factor Productivity of Major Crops in Southern Ethiopia: A Dis-Aggregated Analysis of the Growth Components," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    11. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    12. Dag Fjeld Edvardsen & Finn R. Førsund & Sverre A. C. Kittelsen, 2017. "Productivity development of Norwegian institutions of higher education 2004–2013," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 399-415, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maniadakis, Nikolaos & Thanassoulis, Emmanuel, 2004. "A cost Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 154(2), pages 396-409, April.
    2. Timo Kuosmanen & Timo Sipiläinen, 2004. "On the Anatomy of Productivity Growth: A Decomposition of the Fisher Ideal TFP Index," Econometrics 0410010, University Library of Munich, Germany.
    3. Diogo Cunha Ferreira & Rui Cunha Marques, 2016. "Malmquist and Hicks–Moorsteen Productivity Indexes for Clusters Performance Evaluation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1015-1053, September.
    4. Jose Zofio, 2007. "Malmquist productivity index decompositions: a unifying framework," Applied Economics, Taylor & Francis Journals, vol. 39(18), pages 2371-2387.
    5. Laurens Cherchye & Wim Moesen, 2003. "Institutional Infrastructure and Economic Performance: Levels versus Catching Up and Frontier Shifts," Public Economics Working Paper Series ces0314, Katholieke Universiteit Leuven, Centrum voor Economische Studiën, Working Group Public Economics.
    6. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    7. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.
    8. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    9. Mukherjee, Kankana & Ray, Subhash C. & Miller, Stephen M., 2001. "Productivity growth in large US commercial banks: The initial post-deregulation experience," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 913-939, May.
    10. Andrew Johnson & John Ruggiero, 2014. "Nonparametric measurement of productivity and efficiency in education," Annals of Operations Research, Springer, vol. 221(1), pages 197-210, October.
    11. Kevork, Ilias S. & Pange, Jenny & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2017. "Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1125-1140.
    12. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    13. Pontus Mattsson & Jonas Månsson & Christian Andersson & Fredrik Bonander, 2018. "A bootstrapped Malmquist index applied to Swedish district courts," European Journal of Law and Economics, Springer, vol. 46(1), pages 109-139, August.
    14. Chen, Xiaoqing & Liu, Xinwang & Zhu, Qingyuan, 2022. "Comparative analysis of total factor productivity in China's high-tech industries," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    16. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    17. Antonio Peyrache, 2014. "Hicks-Moorsteen versus Malmquist: a connection by means of a radial productivity index," Journal of Productivity Analysis, Springer, vol. 41(3), pages 435-442, June.
    18. W. Erwin Diewert & Kevin J. Fox, 2014. "Decomposing Bjurek Productivity Indexes into Explanatory Factors," Discussion Papers 2014-33, School of Economics, The University of New South Wales.
    19. C.J. O'Donnell, 2011. "The Sources of Productivity Change in the Manufacturing Sectors of the U.S. Economy," CEPA Working Papers Series WP072011, School of Economics, University of Queensland, Australia.
    20. Jradi, Samah & Bouzdine Chameeva, Tatiana & Aparicio, Juan, 2019. "The measurement of revenue inefficiency over time: An additive perspective," Omega, Elsevier, vol. 83(C), pages 167-180.

    More about this item

    Keywords

    Total factor productivity; Fisher ideal index; Malmquist index; Decompositions; Agriculture; Aggregation; C43; D24;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:31:y:2009:i:3:p:137-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.