IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v70y2018i4d10.1007_s10640-017-0153-4.html
   My bibliography  Save this article

Optimum Growth and Carbon Policies with Lags in the Climate System

Author

Listed:
  • Lucas Bretschger

    (CER-ETH Center of Economic Research at ETH Zurich)

  • Christos Karydas

    (CER-ETH Center of Economic Research at ETH Zurich)

Abstract

We study the optimal carbon tax in an economy in which climate change, stemming from polluting non-renewable resource, affects the economy’s growth potential. Our main contribution is to introduce and explore the natural time lag of the climate system between emissions and damages to capital accumulation in an endogenous growth setting. This allows us to investigate how optimal climate policy, and its interplay with climate dynamics, affect long-run growth and the transition of the economy towards it. Without pollution decay, a higher speed of emissions diffusion steepens the growth profile of the economy. With pollution decay, this leads to lower short-run but higher long-run economic growth during transition. Poor understanding of the emissions diffusion process leads to suboptimal carbon taxes, resource extraction and growth.

Suggested Citation

  • Lucas Bretschger & Christos Karydas, 2018. "Optimum Growth and Carbon Policies with Lags in the Climate System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 781-806, August.
  • Handle: RePEc:kap:enreec:v:70:y:2018:i:4:d:10.1007_s10640-017-0153-4
    DOI: 10.1007/s10640-017-0153-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-017-0153-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-017-0153-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. GAUDET, Gérard & LASSERRE, Pierre, 2013. "The taxation of nonrenewable natural resources," Cahiers de recherche 2013-10, Universite de Montreal, Departement de sciences economiques.
    2. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    3. Bretschger, Lucas & Suphaphiphat, Nujin, 2014. "Effective climate policies in a dynamic North–South model," European Economic Review, Elsevier, vol. 69(C), pages 59-77.
    4. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    5. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    6. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    7. Julien Daubanes & André Grimaud, 2010. "Taxation of a Polluting Non-renewable Resource in the Heterogeneous World," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 567-588, December.
    8. Armon Rezai & Frederick van der Ploeg & Cees Withagen, 2012. "The Optimal Carbon Tax and Economic Growth: Additive versus Multiplicative Damages," CEEES Paper Series CE3S-05/12, European University at St. Petersburg, Department of Economics.
    9. Sinclair, Peter J N, 1994. "On the Optimum Trend of Fossil Fuel Taxation," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 869-877, Supplemen.
    10. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    11. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    12. Armon Rezai & Frederick van der Ploeg & Cees Withagen, 2020. "Economic growth and the social cost of carbon: additive versus multiplicative damages," Chapters, in: Graciela Chichilnisky & Armon Rezai (ed.), Handbook on the Economics of Climate Change, chapter 9, pages 199-223, Edward Elgar Publishing.
    13. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    14. Grimaud, André & Magné, Bertrand & Rougé, Luc, 2009. "Polluting Non-Renewable Resources, Carbon Abatement and Climate Policy in a Romer Growth Model," TSE Working Papers 09-023, Toulouse School of Economics (TSE).
    15. Sinclair, P.J.N., 1994. "On the Optimum Trend of Fossil Fuel Taxation," Discussion Papers 94-16, Department of Economics, University of Birmingham.
    16. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    17. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    18. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    19. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    20. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    21. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    22. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    23. Gene M. Grossman & Elhanan Helpman, 1993. "Innovation and Growth in the Global Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262570971, December.
    24. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    25. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    26. Reyer Gerlagh, 2012. "Carbon Prices for the Next Thousand Years," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, August.
    27. Lucas Bretschger & Simone Valente, 2011. "Climate Change and Uneven Development," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 825-845, December.
    28. Groth, Christian & Schou, Poul, 2007. "Growth and non-renewable resources: The different roles of capital and resource taxes," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 80-98, January.
    29. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    30. Philippe Michel & Gilles Rotillon, 1995. "Disutility of pollution and endogenous growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 279-300, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    2. Bondarev, Anton & Greiner, Alfred, 2020. "Global warming and technical change: Multiple steady-states and policy options," China Economic Review, Elsevier, vol. 62(C).
    3. Lee H. Endress & James A. Roumasset & Christopher A. Wada, 2020. "Do Natural Disasters Make Sustainable Growth Impossible?," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 319-345, July.
    4. Quaas, Martin F. & Bröcker, Johannes, 2016. "Substitutability and the social cost of carbon in a solvable growth model with irreversible climate change," Economics Working Papers 2016-09, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Lucas Bretschger & Sjak Smulders, 2018. "Taking Time for the Environment: On Timing and the Role of Delays in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 731-736, August.
    6. Tsigaris, Panagiotis & Wood, Joel, 2019. "The potential impacts of climate change on capital in the 21st century," Ecological Economics, Elsevier, vol. 162(C), pages 74-86.
    7. Anton Bondarev & Alfred Greiner, 2022. "How ongoing structural change creates a double dividend: outdating of technologies and green growth," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(2), pages 125-160, May.
    8. Yuxiang Zhang & Deqing Tan & Zhi Liu, 2019. "Leasing or Selling? Durable Goods Manufacturer Marketing Model Selection under a Mixed Carbon Trading-and-Tax Policy Scenario," IJERPH, MDPI, vol. 16(2), pages 1-29, January.
    9. Sara Cerasoli & Amilcare Porporato, 2023. "Optimal Resource Allocation for Carbon Mitigation," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    10. Zaili Zhen & Lixin Tian, 2020. "The impact of climate damage function on the social cost of carbon and economic growth rate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1287-1304, October.
    11. Marie-Catherine Riekhof & Johannes Bröcker, 2017. "Does The Adverse Announcement Effect Of Climate Policy Matter? — A Dynamic General Equilibrium Analysis," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VARDAR, N. Baris, 2014. "Optimal energy transition and taxation of non-renewable resources," LIDAM Discussion Papers CORE 2014021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    3. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    4. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    5. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    6. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    7. Frederick van der Ploeg & Cees Withagen, 2015. "Global Warming and the Green Paradox: A Review of Adverse Effects of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 285-303.
    8. Bretschger, Lucas & Suphaphiphat, Nujin, 2014. "Effective climate policies in a dynamic North–South model," European Economic Review, Elsevier, vol. 69(C), pages 59-77.
    9. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    10. Moreaux, Michel & Withagen, Cees, 2013. "Climate Change and Carbon Capture and Storage," LERNA Working Papers 13.03.390, LERNA, University of Toulouse.
    11. Grimaud, André & Magné, Bertrand & Rougé, Luc, 2008. "Carbon Storage in a Growth Model with Climate and R&D Policy," IDEI Working Papers 536, Institut d'Économie Industrielle (IDEI), Toulouse.
    12. Lucas Bretschger & Alexandra Vinogradova, 2014. "Growth and Mitigation Policies with Uncertain Climate Damage," CEEES Paper Series CE3S-02/14, European University at St. Petersburg, Department of Economics.
    13. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    14. Moreaux, Michel & Withagen, Cees, 2015. "Optimal abatement of carbon emission flows," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 55-70.
    15. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    16. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    17. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    18. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    19. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.

    More about this item

    Keywords

    Climate policy; Non-renewable resource dynamics; Pollution diffusion lag; Optimum growth;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:70:y:2018:i:4:d:10.1007_s10640-017-0153-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.