Advanced Search
MyIDEAS: Login

Optimized Multivariate Lag Structure Selection

Contents:

Author Info

  • Peter Winker

Abstract

Model selection – choosing the relevant variables and structures – is a central task in econometrics. Given a limited number of observations, estimation and inference depend on this choice. A frequently treated model-selection problem arises in multivariate autoregressive models, where the problem reduces to the choice of a dynamic structure. In most applications this choice is based either on some ad hoc procedure or on a search within a very small subset of all possible models. In this paper the selection is performed using an explicit optimization approach for a given information criterion. Since complete enumeration of all possible lag structures is infeasible even for moderate dimensions, the global optimization heuristic of threshold accepting is implemented. A simulation study compares this approach with the standard ’take all up to the kth lag‘ approach. It is found that, if the lag structure of the true model is sparse, the threshold accepting optimization approach gives far better approximations.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://journals.kluweronline.com/issn/0927-7099/contents
Download Restriction: no

Bibliographic Info

Article provided by Society for Computational Economics in its journal Computational Economics.

Volume (Year): 16 (2000)
Issue (Month): 1/2 (October)
Pages: 87-103

as in new window
Handle: RePEc:kap:compec:v:16:y:2000:i:1/2:p:87-103

Contact details of provider:
Web page: http://www.springerlink.com/link.asp?id=100248
More information through EDIRC

Related research

Keywords: model selection; VAR; identification; heuristic optimization; threshold accepting;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.
  2. Ivan Savin & Peter Winker, 2010. "Heuristic Optimization Methods for Dynamic Panel Data Model Selection. Application on the Russian Innovative Performance," Working Papers 027, COMISEF.
  3. Fitzenberger, Bernd & Winker, Peter, 2007. "Improving the computation of censored quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 88-108, September.
  4. Grigori Fainstein & Igor Novikov, 2011. "The Comparative Analysis of Credit Risk Determinants In the Banking Sector of the Baltic States," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 20-45, June.
  5. Grigori Fainstein & Igor Novikov, 2011. "The role of macroeconomic determinants in credit risk measurement in transition country: Estonian example," International Journal of Transitions and Innovation Systems, Inderscience Enterprises Ltd, vol. 1(2), pages 117-137.
  6. Dietmar Maringer & Peter Winker, 2004. "Optimal Lag Structure Selection in VEC-Models," Computing in Economics and Finance 2004 155, Society for Computational Economics.
  7. Chipman, J. & Winker, P., 2005. "Optimal aggregation of linear time series models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 311-331, April.
  8. Gatu, Cristian & Kontoghiorghes, Erricos J., 2006. "Estimating all possible SUR models with permuted exogenous data matrices derived from a VAR process," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 721-739, May.
  9. John S. Chipman & Peter Winker, 2000. "Optimal Industrial Classification: An Application to the German Industrial Classification System," Econometric Society World Congress 2000 Contributed Papers 0522, Econometric Society.
  10. Peter Winker & Dietmar Maringer, 2009. "The convergence of estimators based on heuristics: theory and application to a GARCH model," Computational Statistics, Springer, vol. 24(3), pages 533-550, August.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:16:y:2000:i:1/2:p:87-103. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.