Advanced Search
MyIDEAS: Login

EbayesThresh: R Programs for Empirical Bayes Thresholding

Contents:

Author Info

  • Iain Johnstone
  • Bernard W. Silverman
Registered author(s):

    Abstract

    Suppose that a sequence of unknown parameters is observed sub ject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a heavy-tailed density. Within the package, this can be either a Laplace (double exponential) density or else a mixture of normal distributions with tail behavior similar to the Cauchy distribution. The mixing weight, or sparsity parameter, is chosen automatically by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold, and the package provides the posterior mean, and hard and soft thresholding, as additional options. This paper reviews the method, and gives details (far beyond those previously published) of the calculations needed for implementing the procedures. It explains and motivates both the general methodology, and the use of the EbayesThresh package, through simulated and real data examples. When estimating the wavelet transform of an unknown function, it is appropriate to apply the method level by level to the transform of the observed data. The package can carry out these calculations for wavelet transforms obtained using various packages in R and S-PLUS. Details, including a motivating example, are presented, and the application of the method to image estimation is also explored. The final topic considered is the estimation of a single sequence that may become progressively sparser along the sequence. An iterated least squares isotone regression method allows for the choice of a threshold that depends monotonically on the order in which the observations are made. An alternative possibility, also discussed in detail, is a particular parametric dependence of the sparsity parameter on the position in the sequence.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.jstatsoft.org/v12/i08/paper
    File Function: link to download full text
    Download Restriction: no

    Bibliographic Info

    Article provided by American Statistical Association in its journal Journal of Statistical Software.

    Volume (Year): 12 ()
    Issue (Month): i08 ()
    Pages:

    as in new window
    Handle: RePEc:jss:jstsof:12:i08

    Contact details of provider:
    Web page: http://www.jstatsoft.org/

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Donghoh Kim & Hee-Seok Oh, . "CVTresh: R Package for Level-Dependent Cross-Validation Thresholding," Journal of Statistical Software, American Statistical Association, vol. 15(i10).
    2. Reese, Simon & Li, Yushu, 2013. "Testing for Structural Breaks in the Presence of Data Perturbations: Impacts and Wavelet Based Improvements," Working Papers 2013:36, Lund University, Department of Economics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:12:i08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.