Advanced Search
MyIDEAS: Login to save this article or follow this journal

An Exploration of Neural Networks and Its Application to Real Estate Valuation

Contents:

Author Info

Registered author(s):

    Abstract

    This research applies neural network (NN) technology to real estate appraisal and compares the performance of two NN models in estimating the sales price of residential properties with a traditional multiple regression model. The study is based on 288 sales of homes in Fort Collins, Colorado. Results do not support previous findings that NNs are a superior tool for appraisal analysis. Furthermore, significant problems were encountered with the NN models: inconsistent results between packages, inconsistent results between runs of the same package, and long run times. Any appraiser who plans on using this new technology would do so with caution.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://aux.zicklin.baruch.cuny.edu/jrer/papers/pdf/past/vol10n02/v10p185.pdf
    File Function: Full text
    Download Restriction: no

    Bibliographic Info

    Article provided by American Real Estate Society in its journal Journal of Real Estate Research.

    Volume (Year): 10 (1995)
    Issue (Month): 2 ()
    Pages: 185-202

    as in new window
    Handle: RePEc:jre:issued:v:10:n:2:1995:p:185-202

    Contact details of provider:
    Postal: American Real Estate Society Clemson University School of Business & Behavioral Science Department of Finance 401 Sirrine Hall Clemson, SC 29634-1323
    Email:
    Web page: http://www.aresnet.org/

    Order Information:
    Postal: Diane Quarles American Real Estate Society Manager of Member Services Clemson University Box 341323 Clemson, SC 29634-1323
    Email:
    Web: http://aux.zicklin.baruch.cuny.edu/jrer/about/get.htm

    Related research

    Keywords:

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Maurizio d’Amato, 2007. "Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies," International Real Estate Review, Asian Real Estate Society, vol. 10(2), pages 42-65.
    2. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    3. Baker, Bruce D. & Richards, Craig E., 1999. "A comparison of conventional linear regression methods and neural networks for forecasting educational spending," Economics of Education Review, Elsevier, vol. 18(4), pages 405-415, October.
    4. Beatriz Larraz, 2011. "An Expert System for Online Residential Properties Valuation," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 69-82, April.
    5. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    6. Baker, Bruce D., 2001. "Can flexible non-linear modeling tell us anything new about educational productivity?," Economics of Education Review, Elsevier, vol. 20(1), pages 81-92, February.
    7. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Applying a CART-based approach for the diagnostics of mass appraisal models," MPRA Paper 27646, University Library of Munich, Germany.
    8. Camilo Serrano & Martin Hoesli, . "Are Securitized Real Estate Returns more Predictable than Stock Returns?," Swiss Finance Institute Research Paper Series 08-27, Swiss Finance Institute.
    9. Núñez Tabales, Julia M. & Caridad y Ocerin, José María & Rey Carmona, Francisco J., 2013. "Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 29-44, June.
    10. Steven Peterson & Albert B. Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, American Real Estate Society, vol. 31(2), pages 147-164.
    11. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," MPRA Paper 27645, University Library of Munich, Germany.
    12. George H. Lentz & Ko Wang, 1998. "Residential Appraisal and the Lending Process: A Survey of Issues," Journal of Real Estate Research, American Real Estate Society, vol. 15(1), pages 11-40.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:jre:issued:v:10:n:2:1995:p:185-202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (JRER Graduate Assistant/Webmaster).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.