Advanced Search
MyIDEAS: Login to save this article or follow this journal

Forecasting time‐varying covariance with a robust Bayesian threshold model


Author Info

  • Chih‐Chiang Wu
  • Jack C. Lee
Registered author(s):


    This paper proposes a robust multivariate threshold vector autoregressive model with generalized autoregressive conditional heteroskedasticities and dynamic conditional correlations to describe conditional mean, volatility and correlation asymmetries in financial markets. In addition, the threshold variable for regime switching is formulated as a weighted average of endogenous variables to eliminate excessively subjective belief in the threshold variable decision and to serve as the proxy in deciding which market should be the price leader. The estimation is performed using Markov chain Monte Carlo methods. Furthermore, several meaningful criteria are introduced to assess the forecasting performance in the conditional covariance matrix. The proposed methodology is illustrated using daily S&P500 futures and spot prices. Copyright (C) 2010 John Wiley & Sons, Ltd.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: no

    Bibliographic Info

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

    Volume (Year): 30 (2011)
    Issue (Month): 5 (August)
    Pages: 451-468

    as in new window
    Handle: RePEc:jof:jforec:v:30:y:2011:i:5:p:451-468

    Contact details of provider:
    Web page:

    Related research

    Keywords: dynamic conditional correlation ; generalized autoregressive conditional heteroskedasticity ; hedge performance ; Markov chain Monte Carlo ; value at risk ;


    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:5:p:451-468. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.