Advanced Search
MyIDEAS: Login to save this article or follow this journal

Forecasting realized volatility: a Bayesian model-averaging approach

Contents:

Author Info

  • Chun Liu

    (School of Economics and Management, Tsinghua University, Beijing, People's Republic of China)

  • John M. Maheu

    (Department of Economics, University of Toronto, Ontario, Canada)

Abstract

How to measure and model volatility is an important issue in finance. Recent research uses high-frequency intraday data to construct ex post measures of daily volatility. This paper uses a Bayesian model-averaging approach to forecast realized volatility. Candidate models include autoregressive and heterogeneous autoregressive specifications based on the logarithm of realized volatility, realized power variation, realized bipower variation, a jump and an asymmetric term. Applied to equity and exchange rate volatility over several forecast horizons, Bayesian model averaging provides very competitive density forecasts and modest improvements in point forecasts compared to benchmark models. We discuss the reasons for this, including the importance of using realized power variation as a predictor. Bayesian model averaging provides further improvements to density forecasts when we move away from linear models and average over specifications that allow for GARCH effects in the innovations to log-volatility. Copyright © 2009 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/jae.1070
File Function: Link to full text; subscription required
Download Restriction: no

File URL: http://qed.econ.queensu.ca:80/jae/2009-v24.5/
File Function: Supporting data files and programs
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 24 (2009)
Issue (Month): 5 ()
Pages: 709-733

as in new window
Handle: RePEc:jae:japmet:v:24:y:2009:i:5:p:709-733

Contact details of provider:
Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information:
Email:
Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, School of Economics and Management, University of Aarhus.
  3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  4. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  7. Pesaran, M Hashem & Zaffaroni, Paolo, 2005. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi-Asset Volatility Models for Risk Management," CEPR Discussion Papers 5279, C.E.P.R. Discussion Papers.
  8. Jonathan H. Wright, 2003. "Forecasting U.S. inflation by Bayesian Model Averaging," International Finance Discussion Papers 780, Board of Governors of the Federal Reserve System (U.S.).
  9. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  10. Jacobson, Tor & Karlsson, Sune, 2002. "Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach," Working Paper Series 138, Sveriges Riksbank (Central Bank of Sweden).
  11. Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
  12. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  13. Roel C. A. Oomen, 2005. "Properties of Bias-Corrected Realized Variance Under Alternative Sampling Schemes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 555-577.
  14. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Series Working Papers 2006-W03, University of Oxford, Department of Economics.
  15. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
  16. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  17. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  18. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2007. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," CREATES Research Papers 2007-22, School of Economics and Management, University of Aarhus.
  19. Nour Meddahi, 2002. "ARMA Representation of Integrated and Realized Variances," CIRANO Working Papers 2002s-93, CIRANO.
  20. Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
  21. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging using Predictive Measures," Working Paper Series 191, Sveriges Riksbank (Central Bank of Sweden).
  22. MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
  23. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
  24. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
  25. G. William Schwert, 1990. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  26. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
  27. John M. Maheu & Thomas H. McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
  28. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  29. GORDON, Stephen, 1995. "Stochastic Trends, Deterministic Trends and Business Cycle Turning Points," Cahiers de recherche 9503, Université Laval - Département d'économique.
  30. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, 01.
  31. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  32. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
  33. Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
  34. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-98, April.
  35. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  36. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.
  37. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
  38. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  39. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
  40. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  41. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  42. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  43. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
  44. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  45. Koop, Gary & Potter, Simon M., 1998. "Bayes factors and nonlinearity: Evidence from economic time series1," Journal of Econometrics, Elsevier, vol. 88(2), pages 251-281, November.
  46. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  47. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-76, July.
  48. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  49. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, 09.
  2. Shawn Ni & Antonello Loddo & Dongchu Sun, 2009. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Working Papers 0911, Department of Economics, University of Missouri.
  3. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
  4. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
  5. Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, School of Economics and Management, University of Aarhus.
  6. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
  7. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
  8. Tian Xie, 2012. "Least Squares Model Averaging by Prediction Criterion," Working Papers 1299, Queen's University, Department of Economics.
  9. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
  10. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:24:y:2009:i:5:p:709-733. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.