Advanced Search
MyIDEAS: Login to save this article or follow this journal

Feasible Cross-Validatory Model Selection for General Stationary Processes

Contents:

Author Info

  • Racine, Jeff

Abstract

Cross-validation is a method used to estimate the expected prediction error of a model. Such estimates may be of interest in themselves, but their use for model selection is more common. Unfortunately, cross-validation is viewed as being computationally expensive in many situations. In this paper it is shown that the h-block cross-validation function for least-squares based estimators can be expressed in a form which enormously impact on the amount of calculation required. The standard approach is of O(T[superscript 2]) where T denotes the sample size, while the proposed approach is of O(T) and yields identical numerical results The proposed approach has widespread potential application ranging from the estimation of expected prediction error to least squares-based model specification to the selection of the series order for non-parametric series estimation. The technique is valid for general stationary observations. Simulation results and applications are considered.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://qed.econ.queensu.ca:80/jae/1997-v12.2/
File Function: Supporting data files and programs
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 12 (1997)
Issue (Month): 2 (March-April)
Pages: 169-79

as in new window
Handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:169-79

Contact details of provider:
Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information:
Email:
Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
  2. González, Andrés & Teräsvirta, Timo, 2006. "Modelling autoregressive processes with a shifting mean," Working Paper Series in Economics and Finance 637, Stockholm School of Economics, revised 22 May 2007.
  3. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
  4. Kevin Boyle & Christopher Parmeter & Brent Boehlert & Robert Paterson, 2013. "Due Diligence in Meta-analyses to Support Benefit Transfers," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 55(3), pages 357-386, July.
  5. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:12:y:1997:i:2:p:169-79. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.