IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v54y2008i4p642-656.html
   My bibliography  Save this article

Optimal Policy for Software Vulnerability Disclosure

Author

Listed:
  • Ashish Arora

    (H. John Heinz III School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Rahul Telang

    (H. John Heinz III School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Hao Xu

    (H. John Heinz III School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

Software vulnerabilities represent a serious threat to cybersecurity, most cyberattacks exploit known vulnerabilities. Unfortunately, there is no agreed-upon policy for their disclosure. Disclosure policy (which sets a protected period given to a vendor to release the patch for the vulnerability) indirectly affects the speed and quality of the patch that a vendor develops. Thus, CERT/CC and similar bodies acting in the public interest can use disclosure to influence the behavior of vendors and reduce social cost. This paper develops a framework to analyze the optimal timing of disclosure. We formulate a model involving a social planner who sets the disclosure policy and a vendor who decides on the patch release. We show that the vendor typically releases the patch less expeditiously than is socially optimal. The social planner optimally shrinks the protected period to push the vendor to deliver the patch more quickly, and sometimes the patch release time coincides with disclosure. We extend the model to allow the proportion of users implementing patches to depend upon the quality (chosen by the vendor) of the patch. We show that a longer protected period does not always result in a better patch quality. Another extension allows for some fraction of users to use "work-arounds." We show that the possibility of work-arounds can provide the social planner with more leverage, and hence the social planner shrinks the protected period. Interestingly, the possibility of work-arounds can sometimes increase the social cost due to the negative externalities imposed by the users who are able to use the work-arounds on the users who are not.

Suggested Citation

  • Ashish Arora & Rahul Telang & Hao Xu, 2008. "Optimal Policy for Software Vulnerability Disclosure," Management Science, INFORMS, vol. 54(4), pages 642-656, April.
  • Handle: RePEc:inm:ormnsc:v:54:y:2008:i:4:p:642-656
    DOI: 10.1287/mnsc.1070.0771
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1070.0771
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1070.0771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nizovtsev, Dmitri & Thursby, Marie, 2007. "To disclose or not? An analysis of software user behavior," Information Economics and Policy, Elsevier, vol. 19(1), pages 43-64, March.
    2. Fershtman, Chaim & Gandal, Neil & Choi, Jay Pil, 2005. "Internet Security, Vulnerability Disclosure and Software Provision," CEPR Discussion Papers 5269, C.E.P.R. Discussion Papers.
    3. Karthik Kannan & Rahul Telang, 2005. "Market for Software Vulnerabilities? Think Again," Management Science, INFORMS, vol. 51(5), pages 726-740, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravi Sen & Joobin Choobineh & Subodha Kumar, 2020. "Determinants of Software Vulnerability Disclosure Timing," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2532-2552, November.
    2. Ashish Arora & Ramayya Krishnan & Rahul Telang & Yubao Yang, 2010. "An Empirical Analysis of Software Vendors' Patch Release Behavior: Impact of Vulnerability Disclosure," Information Systems Research, INFORMS, vol. 21(1), pages 115-132, March.
    3. Terrence August & Marius Florin Niculescu & Hyoduk Shin, 2014. "Cloud Implications on Software Network Structure and Security Risks," Information Systems Research, INFORMS, vol. 25(3), pages 489-510, September.
    4. Arora, Ashish & Forman, Chris & Nandkumar, Anand & Telang, Rahul, 2010. "Competition and patching of security vulnerabilities: An empirical analysis," Information Economics and Policy, Elsevier, vol. 22(2), pages 164-177, May.
    5. Terrence August & Marius Florin Niculescu, 2013. "The Influence of Software Process Maturity and Customer Error Reporting on Software Release and Pricing," Management Science, INFORMS, vol. 59(12), pages 2702-2726, December.
    6. Terrence August & Tunay I. Tunca, 2011. "Who Should Be Responsible for Software Security? A Comparative Analysis of Liability Policies in Network Environments," Management Science, INFORMS, vol. 57(5), pages 934-959, May.
    7. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    8. Sabyasachi Mitra & Sam Ransbotham, 2015. "Information Disclosure and the Diffusion of Information Security Attacks," Information Systems Research, INFORMS, vol. 26(3), pages 565-584, September.
    9. Vijay Mookerjee & Radha Mookerjee & Alain Bensoussan & Wei T. Yue, 2011. "When Hackers Talk: Managing Information Security Under Variable Attack Rates and Knowledge Dissemination," Information Systems Research, INFORMS, vol. 22(3), pages 606-623, September.
    10. Terrence August & Duy Dao & Kihoon Kim, 2019. "Market Segmentation and Software Security: Pricing Patching Rights," Management Science, INFORMS, vol. 65(10), pages 4575-4597, October.
    11. Ioannidis, Christos & Pym, David & Williams, Julian & Gheyas, Iffat, 2019. "Resilience in information stewardship," European Journal of Operational Research, Elsevier, vol. 274(2), pages 638-653.
    12. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    13. Ioannidis, Christos & Pym, David & Williams, Julian, 2012. "Information security trade-offs and optimal patching policies," European Journal of Operational Research, Elsevier, vol. 216(2), pages 434-444.
    14. Macnish, Kevin & van der Ham, Jeroen, 2020. "Ethics in cybersecurity research and practice," Technology in Society, Elsevier, vol. 63(C).
    15. Zan Zhang & Guofang Nan & Yong Tan, 2020. "Cloud Services vs. On-Premises Software: Competition Under Security Risk and Product Customization," Information Systems Research, INFORMS, vol. 31(3), pages 848-864, September.
    16. Debabrata Dey & Atanu Lahiri & Guoying Zhang, 2015. "Optimal Policies for Security Patch Management," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 462-477, August.
    17. Kalpit Sharma & Arunabha Mukhopadhyay, 2023. "Cyber-risk Management Framework for Online Gaming Firms: an Artificial Neural Network Approach," Information Systems Frontiers, Springer, vol. 25(5), pages 1757-1778, October.
    18. Terrence August & Duy Dao & Marius Florin Niculescu, 2022. "Economics of Ransomware: Risk Interdependence and Large-Scale Attacks," Management Science, INFORMS, vol. 68(12), pages 8979-9002, December.
    19. Alain Bensoussan & Vijay Mookerjee & Wei T. Yue, 2020. "Managing Information System Security Under Continuous and Abrupt Deterioration," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1894-1917, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arora, Ashish & Forman, Chris & Nandkumar, Anand & Telang, Rahul, 2010. "Competition and patching of security vulnerabilities: An empirical analysis," Information Economics and Policy, Elsevier, vol. 22(2), pages 164-177, May.
    2. Ashish Arora & Ramayya Krishnan & Rahul Telang & Yubao Yang, 2010. "An Empirical Analysis of Software Vendors' Patch Release Behavior: Impact of Vulnerability Disclosure," Information Systems Research, INFORMS, vol. 21(1), pages 115-132, March.
    3. Nizovtsev, Dmitri & Thursby, Marie, 2007. "To disclose or not? An analysis of software user behavior," Information Economics and Policy, Elsevier, vol. 19(1), pages 43-64, March.
    4. Pu Li & H. Raghav Rao, 2007. "An examination of private intermediaries’ roles in software vulnerabilities disclosure," Information Systems Frontiers, Springer, vol. 9(5), pages 531-539, November.
    5. Kjell Hausken, 2017. "Security Investment, Hacking, and Information Sharing between Firms and between Hackers," Games, MDPI, vol. 8(2), pages 1-23, May.
    6. Harish Guda & Milind Dawande & Ganesh Janakiraman, 2021. "“Seemingly‐Beneficial” Interventions," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3337-3353, October.
    7. Kjell Hausken, 2018. "Proactivity and Retroactivity of Firms and Information Sharing of Hackers," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-30, March.
    8. Ashish Arora & Anand Nandkumar & Rahul Telang, 2006. "Does information security attack frequency increase with vulnerability disclosure? An empirical analysis," Information Systems Frontiers, Springer, vol. 8(5), pages 350-362, December.
    9. Macnish, Kevin & van der Ham, Jeroen, 2020. "Ethics in cybersecurity research and practice," Technology in Society, Elsevier, vol. 63(C).
    10. Terrence August & Duy Dao & Marius Florin Niculescu, 2022. "Economics of Ransomware: Risk Interdependence and Large-Scale Attacks," Management Science, INFORMS, vol. 68(12), pages 8979-9002, December.
    11. Jingguo Wang & Aby Chaudhury & H. Raghav Rao, 2008. "Research Note ---A Value-at-Risk Approach to Information Security Investment," Information Systems Research, INFORMS, vol. 19(1), pages 106-120, March.
    12. Karthik Kannan & Mohammad S. Rahman & Mohit Tawarmalani, 2016. "Economic and Policy Implications of Restricted Patch Distribution," Management Science, INFORMS, vol. 62(11), pages 3161-3182, November.
    13. Terrence August & Tunay I. Tunca, 2006. "Network Software Security and User Incentives," Management Science, INFORMS, vol. 52(11), pages 1703-1720, November.
    14. Saini Das & Arunabha Mukhopadhyay & Debashis Saha & Samir Sadhukhan, 2019. "A Markov-Based Model for Information Security Risk Assessment in Healthcare MANETs," Information Systems Frontiers, Springer, vol. 21(5), pages 959-977, October.
    15. Xing Gao & Weijun Zhong, 2016. "A differential game approach to security investment and information sharing in a competitive environment," IISE Transactions, Taylor & Francis Journals, vol. 48(6), pages 511-526, June.
    16. Fang Fang & Manoj Parameswaran & Xia Zhao & Andrew B. Whinston, 2014. "An economic mechanism to manage operational security risks for inter-organizational information systems," Information Systems Frontiers, Springer, vol. 16(3), pages 399-416, July.
    17. Qian Tang & Andrew B. Whinston, 2020. "Do Reputational Sanctions Deter Negligence in Information Security Management? A Field Quasi‐Experiment," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 410-427, February.
    18. Kjell Hausken, 2017. "Information Sharing Among Cyber Hackers in Successive Attacks," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-33, June.
    19. Vidyanand Choudhary & Zhe (James) Zhang, 2015. "Research Note—Patching the Cloud: The Impact of SaaS on Patching Strategy and the Timing of Software Release," Information Systems Research, INFORMS, vol. 26(4), pages 845-858, December.
    20. Nikhil Malik & Manmohan Aseri & Param Vir Singh & Kannan Srinivasan, 2022. "Why Bitcoin Will Fail to Scale?," Management Science, INFORMS, vol. 68(10), pages 7323-7349, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:54:y:2008:i:4:p:642-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.