IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v46y2000i10p1317-1336.html
   My bibliography  Save this article

Managing the Delivery of Dialysis Therapy: A Multiclass Fluid Model Analysis

Author

Listed:
  • Stefanos A. Zenios

    (Graduate School of Business, Stanford University, Stanford, California 94305)

  • Prashant C. Fuloria

    (Closed Loop Solutions, Mountain View, California 94043)

Abstract

Motivatedby the exceptionally high mortality statistics of dialysis patients and the ongoing debate about the adequacy of the current reimbursement for dialysis in the United States, we pursue a detailed analysis of the dialysis delivery system. The analysis is based on a multiclass fluid model for the dialysis facility, which combines a pharmacokinetics model of dialysis and an empirically validated model of dialysis-specific mortality. Assuming that the facility operates under budget and capacity constraints, our analysis determines the main factors that affect the delivery of dialysis. Numerical results, which are representative of the dialysis environment in the US, demonstrate the accuracy of the model and provide concrete insights about the operations of the dialysis facility. A major finding is that an improvement in the technology of dialysis is likely to have a more substantial impact on the overall life expectancy of the dialysis population as compared to an increase in the dialysis reimbursement rate.

Suggested Citation

  • Stefanos A. Zenios & Prashant C. Fuloria, 2000. "Managing the Delivery of Dialysis Therapy: A Multiclass Fluid Model Analysis," Management Science, INFORMS, vol. 46(10), pages 1317-1336, October.
  • Handle: RePEc:inm:ormnsc:v:46:y:2000:i:10:p:1317-1336
    DOI: 10.1287/mnsc.46.10.1317.12271
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.46.10.1317.12271
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.46.10.1317.12271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prashant C. Fuloria & Stefanos A. Zenios, 2001. "Outcomes-Adjusted Reimbursement in a Health-Care Delivery System," Management Science, INFORMS, vol. 47(6), pages 735-751, June.
    2. Chris P. Lee & Glenn M. Chertow & Stefanos A. Zenios, 2008. "Optimal Initiation and Management of Dialysis Therapy," Operations Research, INFORMS, vol. 56(6), pages 1428-1449, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    2. Xiuli Chao & Liming Liu & Shaohui Zheng, 2003. "Resource Allocation in Multisite Service Systems with Intersite Customer Flows," Management Science, INFORMS, vol. 49(12), pages 1739-1752, December.
    3. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    4. Maria Bruni & Domenico Conforti & Nicola Sicilia & Sandro Trotta, 2006. "A new organ transplantation location–allocation policy: a case study of Italy," Health Care Management Science, Springer, vol. 9(2), pages 125-142, May.
    5. David H. Howard, 2001. "Dynamic Analysis of Liver Allocation Policies," Medical Decision Making, , vol. 21(4), pages 257-266, August.
    6. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    7. Theophilus Dhyankumar Chellappa & Ramasubramaniam Muthurathinasapathy & V. G. Venkatesh & Yangyan Shi & Samsul Islam, 2023. "Location of organ procurement and distribution organisation decisions and their impact on kidney allocations: a developing country perspective," Annals of Operations Research, Springer, vol. 321(1), pages 755-781, February.
    8. Amir Elalouf & Ariel Rosenfeld & Ofir Rockach, 2023. "The Extended David-Yechiali Rule for Kidney Allocation," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    9. Mohsen Yaghoubi & Sonya Cressman & Louisa Edwards & Steven Shechter & Mary M. Doyle-Waters & Paul Keown & Ruth Sapir-Pichhadze & Stirling Bryan, 2023. "A Systematic Review of Kidney Transplantation Decision Modelling Studies," Applied Health Economics and Health Policy, Springer, vol. 21(1), pages 39-51, January.
    10. Perlman, Yael & Elalouf, Amir & Yechiali, Uri, 2018. "Dynamic allocation of stochastically-arriving flexible resources to random streams of objects with application to kidney cross-transplantation," European Journal of Operational Research, Elsevier, vol. 265(1), pages 169-177.
    11. Stefanos A. Zenios, 2002. "Optimal Control of a Paired-Kidney Exchange Program," Management Science, INFORMS, vol. 48(3), pages 328-342, March.
    12. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    13. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    14. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    15. Zahra Gharibi & Michael Hahsler, 2021. "A Simulation-Based Optimization Model to Study the Impact of Multiple-Region Listing and Information Sharing on Kidney Transplant Outcomes," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    16. Frank Kelly & Elena Yudovina, 2018. "A Markov Model of a Limit Order Book: Thresholds, Recurrence, and Trading Strategies," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 181-203, February.
    17. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.
    18. Sarang Deo & Sameer Mehta & Charles J. Corbett, 2022. "Optimal Scale‐Up of HIV Treatment Programs in Resource‐Limited Settings Under Supply Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 883-905, March.
    19. Can Zhang & Atalay Atasu & Turgay Ayer & L. Beril Toktay, 2020. "Truthful Mechanisms for Medical Surplus Product Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 735-753, July.
    20. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:46:y:2000:i:10:p:1317-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.