Advanced Search
MyIDEAS: Login to save this article or follow this journal

On the Mathematical Theory of Schedules

Contents:

Author Info

  • J. O. Mayhugh

    (General Dynamics/Forth Worth)

Registered author(s):

    Abstract

    The elapsed time to complete a scheduled task is expressed as a function of the completion times of the component tasks and the path matrix of the scheddule graph. The schedule function is interpreted geometrically as a polyhedron. If the scheduled activities have random completion times, the probability distribution of the time to complete the entire task is found by integrating over the contours of the polyhedron. Composite schedule functions are represented by algebraic formulae which are applicable in both the probabilistic and non-probabilistic cases. A method for joint control of cost and schedule is presented.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://dx.doi.org/10.1287/mnsc.11.2.289
    Download Restriction: no

    Bibliographic Info

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 11 (1964)
    Issue (Month): 2 (November)
    Pages: 289-307

    as in new window
    Handle: RePEc:inm:ormnsc:v:11:y:1964:i:2:p:289-307

    Contact details of provider:
    Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Email:
    Web page: http://www.informs.org/
    More information through EDIRC

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:11:y:1964:i:2:p:289-307. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.