IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v30y2011i5p801-819.html
   My bibliography  Save this article

Active Machine Learning for Consideration Heuristics

Author

Listed:
  • Daria Dzyabura

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • John R. Hauser

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

We develop and test an active-machine-learning method to select questions adaptively when consumers use heuristic decision rules. The method tailors priors to each consumer based on a "configurator." Subsequent questions maximize information about the decision heuristics (minimize expected posterior entropy). To update posteriors after each question, we approximate the posterior with a variational distribution and use belief propagation (iterative loops of Bayes updating). The method runs sufficiently fast to select new queries in under a second and provides significantly and substantially more information per question than existing methods based on random, market-based, or orthogonal-design questions. Synthetic data experiments demonstrate that adaptive questions provide close-to-optimal information and outperform existing methods even when there are response errors or "bad" priors. The basic algorithm focuses on conjunctive or disjunctive rules, but we demonstrate generalizations to more complex heuristics and to the use of previous-respondent data to improve consumer-specific priors. We illustrate the algorithm empirically in a Web-based survey conducted by an American automotive manufacturer to study vehicle consideration (872 respondents, 53 feature levels). Adaptive questions outperform market-based questions when estimating heuristic decision rules. Heuristic decision rules predict validation decisions better than compensatory rules.

Suggested Citation

  • Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
  • Handle: RePEc:inm:ormksc:v:30:y:2011:i:5:p:801-819
    DOI: 10.1287/mksc.1110.0660
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1110.0660
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1110.0660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    2. Shane Frederick, 2005. "Cognitive Reflection and Decision Making," Journal of Economic Perspectives, American Economic Association, vol. 19(4), pages 25-42, Fall.
    3. Timothy J. Gilbride & Greg M. Allenby, 2006. "Estimating Heterogeneous EBA and Economic Screening Rule Choice Models," Marketing Science, INFORMS, vol. 25(5), pages 494-509, September.
    4. Hauser, John R & Wernerfelt, Birger, 1990. "An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 393-408, March.
    5. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    6. Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
    7. John D. C. Little, 1970. "Models and Managers: The Concept of a Decision Calculus," Management Science, INFORMS, vol. 16(8), pages 466-485, April.
    8. repec:cup:judgdm:v:4:y:2009:i:3:p:200-213 is not listed on IDEAS
    9. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    10. Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
    11. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    12. Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
    13. John R. Hauser, 1978. "Testing the Accuracy, Usefulness, and Significance of Probabilistic Choice Models: An Information-Theoretic Approach," Operations Research, INFORMS, vol. 26(3), pages 406-421, June.
    14. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
    15. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    2. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    3. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    4. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    5. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    6. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    7. Bremer, Lucas & Heitmann, Mark & Schreiner, Thomas F., 2017. "When and how to infer heuristic consideration set rules of consumers," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 516-535.
    8. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    9. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    10. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    11. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    12. Maldonado, Sebastián & Montoya, Ricardo & Weber, Richard, 2015. "Advanced conjoint analysis using feature selection via support vector machines," European Journal of Operational Research, Elsevier, vol. 241(2), pages 564-574.
    13. Zhenghui Sha & Yun Huang & Jiawei Sophia Fu & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2018. "A Network-Based Approach to Modeling and Predicting Product Coconsideration Relations," Complexity, Hindawi, vol. 2018, pages 1-14, January.
    14. Lu, Zhentong, 2022. "Estimating multinomial choice models with unobserved choice sets," Journal of Econometrics, Elsevier, vol. 226(2), pages 368-398.
    15. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    16. John Hauser, 2011. "A marketing science perspective on recognition-based heuristics (and the fast-and-frugal paradigm)," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 6(5), pages 396-408, July.
    17. repec:cup:judgdm:v:6:y:2011:i:5:p:396-408 is not listed on IDEAS
    18. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    19. Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
    20. Heiman, Amir & Lowengart, Oded, 2011. "The effects of information about health hazards in food on consumers' choice process," Journal of Econometrics, Elsevier, vol. 162(1), pages 140-147, May.
    21. Raphael Thomadsen & Robert P. Rooderkerk & On Amir & Neeraj Arora & Bryan Bollinger & Karsten Hansen & Leslie John & Wendy Liu & Aner Sela & Vishal Singh & K. Sudhir & Wendy Wood, 2018. "How Context Affects Choice," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 3-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:30:y:2011:i:5:p:801-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.