Advanced Search
MyIDEAS: Login to save this article or follow this journal

The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates


Author Info

  • Albert C. Bemmaor

    (Ecole Supérieure des Sciences Economiques et Commerciales (ESSEC), 95021 Cergy-Pontoise Cedex, France)

  • Janghyuk Lee

    (Groupe HEC, 78351 Jouy-en-Josas Cedex, France)

Registered author(s):


    Assessment of accurate market size and early adoption patterns is essential to strategic decision making of managers involved in new-product launches. This article proposes methodology that explains changes in parameter estimates of the Bass model, (coefficient of innovation), (coefficient of imitation), and (market penetration rate) by direction of "extra-Bass" skew in the data, or equivalently, by underlying heterogeneity of the population. This research shows significantly opposite patterns of these parameter estimates, depending on skew of the diffusion curve detected by a generalized model, i.e., the gamma/shifted Gompertz (G/SG) model, which embeds the Bass model as a special case. The G/SG model originally presented in Bemmaor (1994) is based on two assumptions: (1) Individual-level times to first purchase are distributed shifted Gompertz and (2) individual-level propensity to buy follows a gamma distribution across the population. We assume that the scale parameter of the shifted Gompertz distribution is constant across consumers. The advantage the G/SG model has over alternative diffusion models such as the nonuniform influence model is that its cumulative distribution function takes a closed-form expression. In line with Van den Bulte and Lilien (1997), we analyze these opposite patterns from simulated data using the G/SG model as the true model and 12 real adoption data sets. The patterns are: (1) as the level of censoring decreases, the estimates of and decrease and those of increase when data exhibit more right skew than the Bass model and (2) the estimates of and increase and those of q decrease when data exhibit more left skew than the Bass model. For the simulated data, we manipulated four dimensions: (1) "extra-Bass" skew in the data, (2) ratio , (3) speed of diffusion, and (4) error variance. Both results of the simulated data and the real adoption data sets confirm the existence of two opposite patterns of parameter estimates of the Bass model depending on "extra-Bass" skew. When the model is correctly specified with simulated data, estimates of increase and those of decrease for both the Bass and the G/SG models. The estimates of increase as one adds data points only for the G/SG model. No significant tendency in parameter estimates of was detected for the Bass model. As for ill-conditioning issues, systematic changes in the parameter estimates of the G/SG model can be substantially larger in some cases than those obtained with the Bass model, even though the data were generated by taking the G/SG model as the true one. Therefore, model complexity can aggravate the tendency for parameters to change systematically as one adds data points. The forecasting results from the simulated data show the supremacy of the G/SG model. It provides more accurate results than the Bass model in the one-step ahead, two-step ahead, and three-step ahead forecasts. With the real data set, the G/SG model provides more accurate one-step ahead forecasts than the Bass model, but the model's forecasting performance deteriorates more rapidly than the Bass model when one shifts to two-step ahead and three-step ahead forecasts. The systematic changes in parameter estimates are larger for the more complex model. Our research shows that the G/SG model is a flexible model used to analyze the systematic changes in parameter estimates when specification error and ill-conditioning occur. As our findings incorporate two possible types of parameter estimate bias, compared to the previous single-direction view, they can provide essential information to enhance forecasting accuracy of products and services using new technological innovations. Our forecasting results of simulated and real adoption data raise a question about the optimal horizon of forecasting in applying flexible models of diffusion. The G/SG model also provides grounds to investigate jointly "the speed of takeoff" and "the diffusion speed after takeoff".

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: no

    Bibliographic Info

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 21 (2002)
    Issue (Month): 2 (November)
    Pages: 209-220

    as in new window
    Handle: RePEc:inm:ormksc:v:21:y:2002:i:2:p:209-220

    Contact details of provider:
    Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page:
    More information through EDIRC

    Related research

    Keywords: Diffusion; New-Product Diffusion; Forecasting;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Donald Lehmann & Mercedes Esteban-Bravo, 2006. "When giving some away makes sense to jump-start the diffusion process," Marketing Letters, Springer, vol. 17(4), pages 243-254, December.
    2. Chen, Yuwen & Carrillo, Janice E., 2011. "Single firm product diffusion model for single-function and fusion products," European Journal of Operational Research, Elsevier, vol. 214(2), pages 232-245, October.
    3. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer, vol. 7(2), pages 145-165, October.
    4. Serdar Kale & David Arditi, 2006. "Diffusion of ISO 9000 certification in the precast concrete industry," Construction Management and Economics, Taylor & Francis Journals, vol. 24(5), pages 485-495.
    5. Jonathan Beck, 2007. "The sales effect of word of mouth: a model for creative goods and estimates for novels," Journal of Cultural Economics, Springer, vol. 31(1), pages 5-23, March.
    6. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    7. Michalakelis, C. & Sphicopoulos, T., 2012. "A population dependent diffusion model with a stochastic extension," International Journal of Forecasting, Elsevier, vol. 28(3), pages 587-606.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:21:y:2002:i:2:p:209-220. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.