Advanced Search
MyIDEAS: Login to save this article or follow this journal

Wavelet decomposition and support vector machine for fault diagnosis of monoblock centrifugal pump


Author Info

  • V. Muralidharan
  • V. Sugumaran
  • N.R. Sakthivel
Registered author(s):


    Monoblock centrifugal pumps play a very critical role in a variety of applications and condition monitoring of the various mechanical components of centrifugal pump becomes essential which in turn increases the productivity and reduces the breakdowns. Vibration-based continuous monitoring and analysis using machine learning approaches are gaining momentum. Particularly, artificial neural networks fuzzy logic was employed for continuous monitoring and fault diagnosis. This paper presents the use of support vector machine (SVM) algorithm for fault diagnosis through discrete wavelet features extracted from vibration signals of good and faulty conditions of the components of centrifugal pump. The classification accuracies were computed for different types of classifiers such as artificial neural network (ANN), support vector machine (SVM) and J48 decision tree algorithm.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Inderscience Enterprises Ltd in its journal Int. J. of Data Analysis Techniques and Strategies.

    Volume (Year): 3 (2011)
    Issue (Month): 2 ()
    Pages: 159-177

    as in new window
    Handle: RePEc:ids:injdan:v:3:y:2011:i:2:p:159-177

    Contact details of provider:
    Web page:

    Related research

    Keywords: wavelet decomposition; support vector machines; SVM; classification; monoblock centrifugal pumps; condition monitoring; fault diagnosis; vibration signals; artificial neural networks; ANNs; decision trees.;


    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:3:y:2011:i:2:p:159-177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Graham Langley).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.