IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v20y2003i3p245-276.html
   My bibliography  Save this article

Mathematical model of a PEM fuel cell incorporating CO poisoning and O 2 (air) bleeding

Author

Listed:
  • J.J. Baschuk
  • Xianguo Li

Abstract

A one-dimensional mathematical model has been developed for a fully hydrated and isothermal PEM fuel cell. Mass transport in the gas flow channels, electrode backing and catalyst layers is accounted for, along with the adsorption, desorption and electro-oxidation of hydrogen and carbon monoxide. Additionally, the heterogeneous catalysis of hydrogen and carbon monoxide with oxygen is included for the simulation of oxygen or air bleeding. The model prediction agrees well with published, experimental data at various temperatures, pressures and carbon monoxide concentrations. Simulations with oxygen and air bleeding indicate that a threshold amount of oxygen or air bleeding exists; any increase in the amount of bleeding above the threshold amount results in no further mitigation of CO poisoning. The threshold amount of oxygen or air bleeding is a function of cell current density, with a greater cell current density demanding a larger threshold amount of oxygen or air bleeding.

Suggested Citation

  • J.J. Baschuk & Xianguo Li, 2003. "Mathematical model of a PEM fuel cell incorporating CO poisoning and O 2 (air) bleeding," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 20(3), pages 245-276.
  • Handle: RePEc:ids:ijgeni:v:20:y:2003:i:3:p:245-276
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=3966
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    2. Baschuk, J.J. & Li, Xianguo, 2009. "A comprehensive, consistent and systematic mathematical model of PEM fuel cells," Applied Energy, Elsevier, vol. 86(2), pages 181-193, February.
    3. Dimitrova, Zlatina & Nader, Wissam Bou, 2022. "PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles," Energy, Elsevier, vol. 239(PA).
    4. Jiao, Kui & Zhou, Yibo & Du, Qing & Yin, Yan & Yu, Shuhai & Li, Xianguo, 2013. "Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs," Applied Energy, Elsevier, vol. 104(C), pages 21-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:20:y:2003:i:3:p:245-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.