Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Naïve Approach To Speed Up Portfolio Optimization Problem Using A Multiobjective Genetic Algorithm / Una Aproximación Ingenua Para Acelerar El Programa De Optimización De Carteras Usando Un Algoritmo Genético Multiobjetivo

Contents:

Author Info

  • Baixauli-Soler, J. Samuel

    ()
    (Universidad de Murcia (España))

  • Alfaro-Cid, Eva

    ()
    (Universidad Politécnica de Valencia (España))

  • Fernández-Blanco, Matilde O.

    ()
    (Universidad de Valencia (España))

Abstract

Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean-variance (VaR) efficient frontier as minimising VaR leads to non-convex and non-differential risk-return optimisation problems. However GAs are a time-consuming optimisation technique. In this paper, we propose to use a naïve approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in a reasonable computation time. Our results show that using reduced problems which only consider a quartile of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first quartile of assets is from 1% to 1.3% level of VaR. / Los algoritmos genéticos son apropiados cuando los inversores tienen el propósito de obtener la frontera eficiente media-VaR, ya que minimizar el VaR ocasiona que el problema de optimización rentabilidad-riesgo no sea ni convexo ni diferencial. Sin embargo, los algoritmos genéticos son una técnica de optimización que exige mucho tiempo de computación. En este artículo proponemos usar una aproximación naïve, consistente en dividir la muestra por cuartiles de riesgo para obtener la frontera eficiente en un tiempo razonable. Nuestros resultados muestran que usando problemas reducidos que sólo consideran un cuartil de los activos podemos explorar la frontera eficiente para un mayor número de niveles de riesgo. Concretamente, la muestra del tercer cuartil permite obtener rápidamente fronteras eficientes con un VaR entre el 1,8 y el 2,5%, mientras que el primer cuartil permite obtener las carteras eficientes con niveles de VaR entre el 1 y el 1,3%.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.elsevier.es/es/revistas/investigaciones-europeas-direccion-economia-empresa-345/una-aproximacion-ingenua-acelerar-programa-optimizacion-carteras-90133645-articulos-2012
File Function: complete text
Download Restriction: no

Bibliographic Info

Article provided by Academia Europea de Dirección y Economía de la Empresa (AEDEM) in its journal Investigaciones Europeas de Dirección y Economía de la Empresa.

Volume (Year): 18 (2012)
Issue (Month): 2 ()
Pages: 126-131

as in new window
Handle: RePEc:idi:jiedee:v:18:y:2012:i:2:p:126-131

Contact details of provider:
Postal: Investigaciones Europeas de Dirección y Economía de la Empresa, Facultad de Ciencias Económicas y Empresariales, Universidad de Vigo, Lagoas - Marcosende s/n, E-36310, Vigo, Pontevedra, España
Phone: (+34) 986812473
Fax: (+34) 986812401
Web page: http://www.aedem-virtual.com/es/journal/iedee

Related research

Keywords: Efficient portfolio; Genetic algorithm; Value-at-Risk; Cartera eficiente; Algoritmo genético; Valor en riesgo;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:idi:jiedee:v:18:y:2012:i:2:p:126-131. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tony Crespo Franco).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.