IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i10p2009-2026d14475.html
   My bibliography  Save this article

Ultra-Deepwater Gulf of Mexico Oil and Gas: Energy Return on Financial Investment and a Preliminary Assessment of Energy Return on Energy Investment

Author

Listed:
  • Matthew Moerschbaecher

    (Department of Oceanography and Coastal Sciences, Louisiana State University, 2237 Energy, Coast, and Environment Building, Baton Rouge, LA 70803, USA
    Department of Renewable Natural Resources, Louisiana State University, 2231 Energy, Coast and Environment Building, Baton Rouge, LA 70803, USA)

  • John W. Day Jr.

    (Department of Oceanography and Coastal Sciences, Louisiana State University, 2237 Energy, Coast, and Environment Building, Baton Rouge, LA 70803, USA)

Abstract

The purpose of this paper is to calculate the energy return on financial investment (EROFI) of oil and gas production in the ultra-deepwater Gulf of Mexico (GoM) in 2009 and for the estimated oil reserves of the Macondo Prospect (Mississippi Canyon Block 252). We also calculated a preliminary Energy Return on Investment (EROI) based on published energy intensity ratios including a sensitivity analysis using a range of energy intensity ratios (7 MJ/$, 12 MJ/$, and 18 MJ/$). The EROFI for ultra-deepwater oil and gas at the well-head, ranged from 0.019 to 0.022 barrels (BOE), or roughly 0.85 gallons, per dollar. Our estimates of EROI for 2009 ultra-deepwater oil and natural gas at the well-head ranged from 7–22:1. The independently-derived EROFI of the Macondo Prospect oil reserves ranged from 0.012 to 0.0071 barrels per dollar ( i.e. , $84 to $140 to produce a barrel) and EROI ranged from 4–16:1, related to the energy intensity ratio used to quantify costs. We believe that the lower end of these EROI ranges ( i.e. , 4 to 7:1) is more accurate since these values were derived using energy intensities averaged across the entire domestic oil and gas industry. Time series of the financial and preliminary EROI estimates found in this study suggest that the extraction costs of ultra-deepwater energy reserves in the GoM come at increasing energetic and economic cost to society.

Suggested Citation

  • Matthew Moerschbaecher & John W. Day Jr., 2011. "Ultra-Deepwater Gulf of Mexico Oil and Gas: Energy Return on Financial Investment and a Preliminary Assessment of Energy Return on Energy Investment," Sustainability, MDPI, vol. 3(10), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:10:p:2009-2026:d:14475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/3/10/2009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/3/10/2009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    2. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    3. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    4. Gately, Mark, 2007. "The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico," Ecological Economics, Elsevier, vol. 63(2-3), pages 355-364, August.
    5. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    2. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    3. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    4. Hallock, John L. & Wu, Wei & Hall, Charles A.S. & Jefferson, Michael, 2014. "Forecasting the limits to the availability and diversity of global conventional oil supply: Validation," Energy, Elsevier, vol. 64(C), pages 130-153.
    5. Victor Court & Florian Fizaine, 2014. "Energy transition towards renewables and metal depletion: an approach through the EROI concept," Post-Print hal-01411803, HAL.
    6. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
    7. Alexander Safronov & Anton Sokolov, 2014. "Preliminary Calculation of the EROI for the Production of Crude Oil and Light Oil Products in Russia," Sustainability, MDPI, vol. 6(9), pages 1-19, September.
    8. Hiroaki Yaritani & Jun Matsushima, 2014. "Analysis of the Energy Balance of Shale Gas Development," Energies, MDPI, vol. 7(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    2. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    3. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    4. Carey W. King & Charles A.S. Hall, 2011. "Relating Financial and Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    5. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    6. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    7. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    8. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    9. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    10. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    11. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    12. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    13. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    14. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    15. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    16. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    17. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    18. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    19. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    20. David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:10:p:2009-2026:d:14475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.