IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v1y2013i1p14-33d23978.html
   My bibliography  Save this article

Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model

Author

Listed:
  • Alexandru V. Asimit

    (Cass Business School, City University, London EC1Y 8TZ, UK)

  • Raluca Vernic

    (Faculty of Mathematics and Computer Science, Ovidius University of Constanta, 124 Mamaia Blvd, 900527 Constanta, and Institute of Mathematical Statistics and Applied Mathematics, 13 Septembrie 13, 050711 Bucharest, Romania)

  • Riċardas Zitikis

    (Department of Statistical and Actuarial Sciences, University of Western Ontario, London, OntarioN6A 5B7, Canada)

Abstract

Evaluating risk measures, premiums, and capital allocation based on dependent multi-losses is a notoriously difficult task. In this paper, we demonstrate how this can be successfully accomplished when losses follow the multivariate Pareto distribution of the second kind, which is an attractive model for multi-losses whose dependence and tail heaviness are influenced by a heavy-tailed background risk. A particular attention is given to the distortion and weighted risk measures and allocations, as well as their special cases such as the conditional layer expectation, tail value at risk, and the truncated tail value at risk. We derive formulas that are either of closed form or follow well-defined recursive procedures. In either case, their computational use is straightforward.

Suggested Citation

  • Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
  • Handle: RePEc:gam:jrisks:v:1:y:2013:i:1:p:14-33:d:23978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/1/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/1/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    3. Gary Venter, 2004. "Capital Allocation Survey with Commentary," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 96-107.
    4. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    5. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    6. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    7. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    8. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    9. Günter Franke & Harris Schlesinger & Richard C. Stapleton, 2006. "Multiplicative Background Risk," Management Science, INFORMS, vol. 52(1), pages 146-153, January.
    10. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    11. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    12. Franke, Guenter & Schlesinger, Harris & Stapleton, Richard C., 2011. "Risk taking with additive and multiplicative background risks," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1547-1568, July.
    13. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    14. Nachman, David C., 1982. "Preservation of "more risk averse" under expectations," Journal of Economic Theory, Elsevier, vol. 28(2), pages 361-368, December.
    15. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    16. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    17. Heilmann, Wolf-Rudiger, 1989. "Decision theoretic foundations of credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 77-95, March.
    18. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    19. Raluca Vernic, 2011. "Tail Conditional Expectation for the Multivariate Pareto Distribution of the Second Kind: Another Approach," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 121-137, March.
    20. Pratt, John W, 1988. "Aversion to One Risk in the Presence of Others," Journal of Risk and Uncertainty, Springer, vol. 1(4), pages 395-413, December.
    21. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    22. Shaun Wang, 1998. "An Actuarial Index of the Right-Tail Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(2), pages 88-101.
    23. Lee, Simon C.K. & Lin, X. Sheldon, 2012. "Modeling Dependent Risks with Multivariate Erlang Mixtures," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 153-180, May.
    24. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    25. Wakker,Peter P., 2010. "Prospect Theory," Cambridge Books, Cambridge University Press, number 9780521765015, January.
    26. Tsanakas, Andreas, 2008. "Risk measurement in the presence of background risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 520-528, April.
    27. Cai, Jun & Li, Haijun, 2005. "Multivariate risk model of phase type," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 137-152, April.
    28. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    29. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    30. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    31. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    32. Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
    33. Tsanakas, Andreas & Barnett, Christopher, 2003. "Risk capital allocation and cooperative pricing of insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 239-254, October.
    34. Yeh, Hsiaw-Chan, 2004. "Some properties and characterizations for generalized multivariate Pareto distributions," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 47-60, January.
    35. J. Dhaene & S. Vanduffel & M. Goovaerts, 2007. "Comonotonicity," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 265-278.
    36. Finkelshtain, Israel & Kella, Offer & Scarsini, Marco, 1999. "On risk aversion with two risks," Journal of Mathematical Economics, Elsevier, vol. 31(2), pages 239-250, March.
    37. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    38. Edward Furman & Ričardas Zitikis, 2009. "Weighted Pricing Functionals With Applications to Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 483-496.
    39. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    2. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    3. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    4. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and the maximum of heterogeneous exponential random variables," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 10-19.
    5. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    6. Yinping You & Xiaohu Li, 2017. "Most unfavorable deductibles and coverage limits for multiple random risks with Archimedean copulas," Annals of Operations Research, Springer, vol. 259(1), pages 485-501, December.
    7. Michael Merz & Mario V. Wüthrich, 2014. "Demand of Insurance under the Cost-of-Capital Premium Calculation Principle," Risks, MDPI, vol. 2(2), pages 1-23, June.
    8. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    9. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    10. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    11. Enkelejd Hashorva & Lanpeng Ji, 2014. "Random Shifting and Scaling of Insurance Risks," Risks, MDPI, vol. 2(3), pages 1-12, July.
    12. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    13. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.
    15. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    16. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    17. Indranil Ghosh, 2018. "A complete characterization of bivariate densities using the conditional percentile function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 485-492, July.
    18. Michel Denuit & Christian Y. Robert, 2022. "Conditional Tail Expectation Decomposition and Conditional Mean Risk Sharing for Dependent and Conditionally Independent Losses," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1953-1985, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    2. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    3. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    4. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    5. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    6. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    7. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    8. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    9. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    10. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    11. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    12. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    13. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    14. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    15. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    16. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.
    17. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    18. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    19. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    20. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:1:y:2013:i:1:p:14-33:d:23978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.