IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v4y2013i2p182-199d25483.html
   My bibliography  Save this article

Dynamic Properties of Evolutionary Multi-player Games in Finite Populations

Author

Listed:
  • Bin Wu

    (Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany)

  • Arne Traulsen

    (Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany)

  • Chaitanya S. Gokhale

    (Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany)

Abstract

William D. Hamilton famously stated that “human life is a many person game and not just a disjoined collection of two person games”. However, most of the theoretical results in evolutionary game theory have been developed for two player games. In spite of a multitude of examples ranging from humans to bacteria, multi-player games have received less attention than pairwise games due to their inherent complexity. Such complexities arise from the fact that group interactions cannot always be considered as a sum of multiple pairwise interactions. Mathematically, multi-player games provide a natural way to introduce non-linear, polynomial fitness functions into evolutionary game theory, whereas pairwise games lead to linear fitness functions. Similarly, studying finite populations is a natural way of introducing intrinsic stochasticity into population dynamics. While these topics have been dealt with individually, few have addressed the combination of finite populations and multi-player games so far. We are investigating the dynamical properties of evolutionary multi-player games in finite populations. Properties of the fixation probability and fixation time, which are relevant for rare mutations, are addressed in well mixed populations. For more frequent mutations, the average abundance is investigated in well mixed as well as in structured populations. While the fixation properties are generalizations of the results from two player scenarios, addressing the average abundance in multi-player games gives rise to novel outcomes not possible in pairwise games.

Suggested Citation

  • Bin Wu & Arne Traulsen & Chaitanya S. Gokhale, 2013. "Dynamic Properties of Evolutionary Multi-player Games in Finite Populations," Games, MDPI, vol. 4(2), pages 1-18, May.
  • Handle: RePEc:gam:jgames:v:4:y:2013:i:2:p:182-199:d:25483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/4/2/182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/4/2/182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurokawa, Shun & Ihara, Yasuo, 2013. "Evolution of social behavior in finite populations: A payoff transformation in general n-player games and its implications," Theoretical Population Biology, Elsevier, vol. 84(C), pages 1-8.
    2. Han, The Anh & Traulsen, Arne & Gokhale, Chaitanya S., 2012. "On equilibrium properties of evolutionary multi-player games with random payoff matrices," Theoretical Population Biology, Elsevier, vol. 81(4), pages 264-272.
    3. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    4. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    5. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    6. Sabin Lessard, 2011. "On the Robustness of the Extension of the One-Third Law of Evolution to the Multi-Player Game," Dynamic Games and Applications, Springer, vol. 1(3), pages 408-418, September.
    7. Weini Huang & Bernhard Haubold & Christoph Hauert & Arne Traulsen, 2012. "Emergence of stable polymorphisms driven by evolutionary games between mutants," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    8. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    9. Maciej Bukowski & Jacek Miekisz, 2004. "Evolutionary and asymptotic stability in symmetric multi-player games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(1), pages 41-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    2. Bin Wu & Lei Zhou, 2018. "Individualised aspiration dynamics: Calculation by proofs," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-15, September.
    3. Gu, Cuiling & Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Liu, Yang, 2022. "Evolutionary dynamics of multi-player snowdrift games based on the Wright-Fisher process," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    5. Chaitanya S. Gokhale & Joseph Bulbulia & Marcus Frean, 2022. "Collective narratives catalyse cooperation," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    6. Xia, Ke, 2021. "The characteristics of average abundance function of multi-player threshold public goods evolutionary game model under redistribution mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    8. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    9. Xia, Ke, 2021. "Average abundance function of multi-player threshold public goods without initial endowment evolutionary game model under differential aspiration levels and redistribution mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    11. McCandlish, David M. & Epstein, Charles L. & Plotkin, Joshua B., 2015. "Formal properties of the probability of fixation: Identities, inequalities and approximations," Theoretical Population Biology, Elsevier, vol. 99(C), pages 98-113.
    12. Marta C. Couto & Saptarshi Pal, 2023. "Introspection Dynamics in Asymmetric Multiplayer Games," Dynamic Games and Applications, Springer, vol. 13(4), pages 1256-1285, December.
    13. Éloi Martin & Sabin Lessard, 2023. "Assortment by Group Founders Always Promotes the Evolution of Cooperation Under Global Selection But Can Oppose it Under Local Selection," Dynamic Games and Applications, Springer, vol. 13(4), pages 1194-1218, December.
    14. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    15. Dhaker Kroumi & Éloi Martin & Cong Li & Sabin Lessard, 2021. "Effect of Variability in Payoffs on Conditions for the Evolution of Cooperation in a Small Population," Dynamic Games and Applications, Springer, vol. 11(4), pages 803-834, December.
    16. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaitanya Gokhale & Arne Traulsen, 2014. "Evolutionary Multiplayer Games," Dynamic Games and Applications, Springer, vol. 4(4), pages 468-488, December.
    2. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    3. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    4. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    5. Marta C. Couto & Saptarshi Pal, 2023. "Introspection Dynamics in Asymmetric Multiplayer Games," Dynamic Games and Applications, Springer, vol. 13(4), pages 1256-1285, December.
    6. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    7. Éloi Martin & Sabin Lessard, 2023. "Assortment by Group Founders Always Promotes the Evolution of Cooperation Under Global Selection But Can Oppose it Under Local Selection," Dynamic Games and Applications, Springer, vol. 13(4), pages 1194-1218, December.
    8. Fukutomi, Masao & Kurokawa, Shun, 2018. "How much cost should reciprocators pay in order to distinguish the opponent's cooperation from the opponent's defection?," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 301-314.
    9. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    10. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & He, Yun-Xin & Qiu, Tian & Ren, Fei & Shi, Yong-Dong & Zhong, Chen-Yang, 2020. "Multiple learning mechanisms promote cooperation in public goods games with project selection," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Czuppon, Peter & Gokhale, Chaitanya S., 2018. "Disentangling eco-evolutionary effects on trait fixation," Theoretical Population Biology, Elsevier, vol. 124(C), pages 93-107.
    12. Gu, Cuiling & Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Liu, Yang, 2022. "Evolutionary dynamics of multi-player snowdrift games based on the Wright-Fisher process," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Gokhale, Chaitanya S. & Hauert, Christoph, 2016. "Eco-evolutionary dynamics of social dilemmas," Theoretical Population Biology, Elsevier, vol. 111(C), pages 28-42.
    14. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    15. Han, The Anh & Traulsen, Arne & Gokhale, Chaitanya S., 2012. "On equilibrium properties of evolutionary multi-player games with random payoff matrices," Theoretical Population Biology, Elsevier, vol. 81(4), pages 264-272.
    16. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    17. Saptarshi Pal & Christian Hilbe, 2022. "Reputation effects drive the joint evolution of cooperation and social rewarding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    19. Julián García & Arne Traulsen, 2012. "The Structure of Mutations and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    20. Todd Bodnar & Marcel Salathé, 2012. "Governing the Global Commons with Local Institutions," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:4:y:2013:i:2:p:182-199:d:25483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.