IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p482-d72581.html
   My bibliography  Save this article

The Regulatory Noose: Logan City’s Adventures in Micro-Hydropower

Author

Listed:
  • Megan Hansen

    (Department of Economics and Finance, Utah State University, Logan, UT 84322, USA)

  • Randy T. Simmons

    (Department of Economics and Finance, Utah State University, Logan, UT 84322, USA)

  • Ryan M. Yonk

    (Department of Economics and Finance, Utah State University, Logan, UT 84322, USA)

Abstract

Recent growth in the renewable energy industry has increased government support for alternative energy. In the United States, hydropower is the largest source of renewable energy and also one of the most efficient. Currently, there are 30,000 megawatts of potential energy capacity through small- and micro-hydro projects throughout the United States. Increased development of micro-hydro could double America’s hydropower energy generation, but micro-hydro is not being developed at the same rate as other renewable sources. Micro-hydro is regulated by the Federal Energy Regulatory Commission and subject to the same regulation as large hydroelectric projects despite its minimal environmental impact. We studied two cases of micro-hydro projects in Logan, Utah, and Afton, Wyoming, which are both small rural communities. Both cases showed that the web of federal regulation is likely discouraging the development of micro-hydro in the United States by increasing the costs in time and funds for developers. Federal environmental regulation like the National Environmental Policy Act, the Endangered Species Act, and others are likely discouraging the development of clean renewable energy through micro-hydro technology.

Suggested Citation

  • Megan Hansen & Randy T. Simmons & Ryan M. Yonk, 2016. "The Regulatory Noose: Logan City’s Adventures in Micro-Hydropower," Energies, MDPI, vol. 9(7), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:482-:d:72581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    2. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    3. Lea Kosnik, 2010. "Balancing Environmental Protection and Energy Production in the Federal Hydropower Licensing Process," Land Economics, University of Wisconsin Press, vol. 86(3).
    4. Pierson, Paul, 2000. "Increasing Returns, Path Dependence, and the Study of Politics," American Political Science Review, Cambridge University Press, vol. 94(2), pages 251-267, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adamantia Zoi Vougioukli & Eleni Didaskalou & Dimitrios Georgakellos, 2017. "Financial Appraisal of Small Hydro-Power Considering the Cradle-to-Grave Environmental Cost: A Case from Greece," Energies, MDPI, vol. 10(4), pages 1-20, March.
    2. Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Community-Based Business on Small Hydropower (SHP) in Rural Japan: A Case Study on a Community Owned SHP Model of Ohito Agricultural Cooperative," Energies, MDPI, vol. 14(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy J. Foxon, 2014. "Technological lock-in and the role of innovation," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 20, pages 304-316, Edward Elgar Publishing.
    2. Hugo Priemus & Bert van Wee (ed.), 2013. "International Handbook on Mega-Projects," Books, Edward Elgar Publishing, number 14791.
    3. Chantal C. Cantarelli & Bent Flyvbjerg, 2013. "Mega-projects’ cost performance and lock-in: problems and solutions," Chapters, in: Hugo Priemus & Bert van Wee (ed.), International Handbook on Mega-Projects, chapter 15, pages 333-355, Edward Elgar Publishing.
    4. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    5. Frank, Joshua, 2005. "Technological lock-in, positive institutional feedback, and research on laboratory animals," Structural Change and Economic Dynamics, Elsevier, vol. 16(4), pages 557-575, December.
    6. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    7. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    8. Esther Pittroff, 2016. "Whistle-blowing regulation in different corporate governance systems: an analysis of the regulation approaches from the view of path dependence theory," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 20(4), pages 703-727, December.
    9. Luigi Marengo & Paolo Zeppini, 2016. "The arrival of the new," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 171-194, March.
    10. Choi, Chang Gyu & Lee, Sugie & Kim, Heungsoon & Seong, Eun Yeong, 2019. "Critical junctures and path dependence in urban planning and housing policy: A review of greenbelts and New Towns in Korea’s Seoul metropolitan area," Land Use Policy, Elsevier, vol. 80(C), pages 195-204.
    11. Pamela Jeziorska-Biel & Katarzyna Leśniewska-Napierała & Konrad Czapiewski, 2021. "(Circular) Path Dependence—The Role of Vineyards in Land Use, Society and Regional Development—The Case of Lubuskie Region (Poland)," Energies, MDPI, vol. 14(24), pages 1-20, December.
    12. Ron Martin, 2010. "Roepke Lecture in Economic Geography—Rethinking Regional Path Dependence: Beyond Lock-in to Evolution," Economic Geography, Taylor & Francis Journals, vol. 86(1), pages 1-27, January.
    13. Jan Fagerberg & David C Mowery & Bart Verspagen, 2009. "The evolution of Norway's national innovation system," Science and Public Policy, Oxford University Press, vol. 36(6), pages 431-444, July.
    14. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    15. Björn Toelstede, 2019. "How path-creating mechanisms and structural lock-ins make societies drift from democracy to authoritarianism," Rationality and Society, , vol. 31(2), pages 233-262, May.
    16. Giliberto Capano & Michael Howlett & Darryl S L Jarvis & M Ramesh, 2022. "Long-term policy impacts of the coronavirus: normalization, adaptation, and acceleration in the post-COVID state [Racial, economic, and health inequality and COVID-19 infection in the United States," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 41(1), pages 1-12.
    17. EEA Wolf & Wouter Van Dooren, 2018. "‘Time to move on’ or ‘taking more time’? How disregarding multiple perspectives on time can increase policy-making conflict," Environment and Planning C, , vol. 36(2), pages 340-356, March.
    18. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
    19. Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    20. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:482-:d:72581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.