IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i9p6083-6104d40471.html
   My bibliography  Save this article

Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

Author

Listed:
  • Hao Liu

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Hongguang Zhang

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Zhicheng Shi

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Haitao Lu

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Guangyao Zhao

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Baofeng Yao

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

Abstract

A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraulic buffer adversely affects the rapid compression process. Auto-ignition performance tests of the RCM are then performed using a DME–O 2 –N 2 mixture. The two-stage ignition delay and negative temperature coefficient (NTC) behavior of the mixture are observed. The effects of driving gas pressure, compression ratio, initial pressure, and nitrogen dilution ratio on the two-stage ignition delay are investigated. Results show that both the first-stage and overall ignition delays tend to increase with increasing driving gas pressure. The driving gas pressure within a certain range does not significantly influence the compressed pressure. With increasing compression ratio, the first-stage ignition delay is shortened, whereas the second-stage ignition delay is extended. With increasing initial pressure, both the first-stage and second-stage ignition delays are shortened. The second-stage ignition delay is shortened to a greater extent than that of the first-stage. With increasing nitrogen dilution ratio, the first-stage ignition delay is shortened, whereas the second-stage is extended. Thus, overall ignition delay presents different trends under various compression ratios and compressed pressure conditions.

Suggested Citation

  • Hao Liu & Hongguang Zhang & Zhicheng Shi & Haitao Lu & Guangyao Zhao & Baofeng Yao, 2014. "Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine," Energies, MDPI, vol. 7(9), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:6083-6104:d:40471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/9/6083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/9/6083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cho, Gyubaek & Jeong, Dongsoo & Moon, Gunfeel & Bae, Choongsik, 2010. "Controlled auto-ignition characteristics of methane–air mixture in a rapid intake compression and expansion machine," Energy, Elsevier, vol. 35(10), pages 4184-4191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Merkisz & Ireneusz Pielecha & Anna Łęgowik, 2021. "The Assessment of Autoignition of Modified Jet Fuels," Energies, MDPI, vol. 14(3), pages 1-19, January.
    2. Kai Niu & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Zhicheng Shi & Yan Wang, 2022. "Study on Chemical Kinetics Mechanism of Ignition Characteristics of Dimethyl Ether Blended with Small Molecular Alkanes," Energies, MDPI, vol. 15(13), pages 1-17, June.
    3. Zhicheng Shi & Hongguang Zhang & Hao Liu & Haitao Lu & Jiazheng Li & Xiang Gao, 2015. "Effects of Buffer Gas Composition on Autoignition of Dimethyl Ether," Energies, MDPI, vol. 8(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duarte, Jorge & Amador, Germán & Garcia, Jesus & Fontalvo, Armando & Vasquez Padilla, Ricardo & Sanjuan, Marco & Gonzalez Quiroga, Arturo, 2014. "Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels," Energy, Elsevier, vol. 71(C), pages 137-147.
    2. Albayrak Çeper, Bilge & Yıldız, Melih & Akansu, S. Orhan & Kahraman, Nafiz, 2017. "Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes," Energy, Elsevier, vol. 136(C), pages 72-79.
    3. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    4. Lee, Kyeonghyeon & Cho, Seokwon & Kim, Namho & Min, Kyoungdoug, 2015. "A study on combustion control and operating range expansion of gasoline HCCI," Energy, Elsevier, vol. 91(C), pages 1038-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:6083-6104:d:40471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.