IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i9p5825-5846d39991.html
   My bibliography  Save this article

Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance

Author

Listed:
  • Yeo Beom Yoon

    (Department of Architectural Engineering, Hanbat National University, San 16-1, Dukmyeong-Dong, Yuseong-Gu, Daejeon 305-320, Korea)

  • Rashmi Manandhar

    (Department of Architectural Engineering, Hanbat National University, San 16-1, Dukmyeong-Dong, Yuseong-Gu, Daejeon 305-320, Korea)

  • Kwang Ho Lee

    (Department of Architectural Engineering, Hanbat National University, San 16-1, Dukmyeong-Dong, Yuseong-Gu, Daejeon 305-320, Korea)

Abstract

The accuracy and speed of the daylighting analysis developed for use in EnergyPlus is better than its predecessors. In EnergyPlus, the detailed method uses the Split-flux algorithm whereas the DElight method uses the Radiosity algorithm. Many existing studies have addressed the two methods, either individually or compared with other daylight analysis methods like Ray tracing but still there is lack of detailed comparative study of these two methods. Our previous studies show that the Split-flux method overestimates the illuminance, especially for the areas away from the window. The Radiosity method has the advantage of accurately predicting this illuminance because of how it deals with the diffuse light. For this study, the EnergyPlus model, which has been calibrated using data measured in a real building in previous studies, has also been used. The calibrated model has a south oriented window only. This model is then used to analyze the interior illuminance inside the room for north, west and east orientation of the window by rotating the model and by changing the wall reflectance of the model with south oriented window. Direct and diffuse component of the illuminance as well as the algorithms have been compared for a detailed analysis.

Suggested Citation

  • Yeo Beom Yoon & Rashmi Manandhar & Kwang Ho Lee, 2014. "Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance," Energies, MDPI, vol. 7(9), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:5825-5846:d:39991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/9/5825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/9/5825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsangrassoulis, Aris & Bourdakis, Vassilis, 2003. "Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria," Renewable Energy, Elsevier, vol. 28(13), pages 2157-2162.
    2. Yeo Beom Yoon & Woo Ram Jeong & Kwang Ho Lee, 2014. "Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods," Energies, MDPI, vol. 7(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    2. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings," Energies, MDPI, vol. 8(7), pages 1-14, June.
    3. Fei Cao & Heng Zhang & Hao Zhou & Na Lu, 2018. "Transient Performance Analysis of the Solar Optical Guide Lighting System in Building Groups," Energies, MDPI, vol. 11(11), pages 1-13, October.
    4. Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
    5. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Hakgeun Jeong & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting," Energies, MDPI, vol. 8(8), pages 1-13, August.
    6. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    7. Seok-Hyun Kim & Kyung-Ju Shin & Bo-Eun Choi & Jae-Hun Jo & Soo Cho & Young-Hum Cho, 2015. "A Study on the Variation of Heating and Cooling Load According to the Use of Horizontal Shading and Venetian Blinds in Office Buildings in Korea," Energies, MDPI, vol. 8(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeo Beom Yoon & Woo Ram Jeong & Kwang Ho Lee, 2014. "Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods," Energies, MDPI, vol. 7(4), pages 1-15, April.
    2. Seok-Hyun Kim & Kyung-Ju Shin & Bo-Eun Choi & Jae-Hun Jo & Soo Cho & Young-Hum Cho, 2015. "A Study on the Variation of Heating and Cooling Load According to the Use of Horizontal Shading and Venetian Blinds in Office Buildings in Korea," Energies, MDPI, vol. 8(2), pages 1-18, February.
    3. Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
    4. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    5. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    6. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings," Energies, MDPI, vol. 8(7), pages 1-14, June.
    7. Freewan, Ahmed A. & Shao, Li & Riffat, Saffa, 2009. "Interactions between louvers and ceiling geometry for maximum daylighting performance," Renewable Energy, Elsevier, vol. 34(1), pages 223-232.
    8. Acosta, Ignacio & Navarro, Jaime & Sendra, Juan José, 2014. "Lighting design in courtyards: Predictive method of daylight factors under overcast sky conditions," Renewable Energy, Elsevier, vol. 71(C), pages 243-254.
    9. Acosta, Ignacio & Varela, Carmen & Molina, Juan Francisco & Navarro, Jaime & Sendra, Juan José, 2018. "Energy efficiency and lighting design in courtyards and atriums: A predictive method for daylight factors," Applied Energy, Elsevier, vol. 211(C), pages 1216-1228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:9:p:5825-5846:d:39991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.